Markov chains can accurately model the state-to-state dynamics of a wide range of complex systems, but the underlying transition matrix is ill-conditioned when the dynamics feature a separation of timescales. Graph transformation (GT) provides a numerically stable method to compute exact mean first passage times (MFPTs) between states, which are the usual dynamical observables in continuous-time Markov chains (CTMCs). Here, we generalize the GT algorithm to discrete-time Markov chains (DTMCs), which are commonly estimated from simulation data, for example, in the Markov state model approach. We then consider the dimensionality reduction of CTMCs and DTMCs, which aids model interpretation and facilitates more expensive computations, including sampling of pathways. We perform a detailed numerical analysis of existing methods to compute the optimal reduced CTMC, given a partitioning of the network into metastable communities (macrostates) of nodes (microstates). We show that approaches based on linear algebra encounter numerical problems that arise from the requisite metastability. We propose an alternative approach using GT to compute the matrix of intermicrostate MFPTs in the original Markov chain, from which a matrix of weighted intermacrostate MFPTs can be obtained. We also propose an approximation to the weighted-MFPT matrix in the strongly metastable limit. Inversion of the weighted-MFPT matrix, which is better conditioned than the matrices that must be inverted in alternative dimensionality reduction schemes, then yields the optimal reduced Markov chain. The superior numerical stability of the GT approach therefore enables us to realize optimal Markovian coarse-graining of systems with rare event dynamics.

1.
J. G.
Kemeny
and
J. L.
Snell
,
Finite Markov Chains
(
Van Nostrand
,
New Jersey, USA
,
1960
).
2.
D. T.
Gillespie
,
Markov Processes: An Introduction for Physical Scientists
(
Academic Press
,
New York, USA
,
1992
).
3.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam, The Netherlands
,
1992
).
4.
J. R.
Norris
,
Markov Chains
(
Cambridge University Press
,
New York, USA
,
1997
).
5.
C. M.
Grinstead
and
J. L.
Snell
,
Introduction to Probability
(
American Mathematical Society
,
Providence, Rhode Island
,
1997
).
6.
H. M.
Taylor
and
S.
Karlin
,
An Introduction to Stochastic Modeling
, 3rd ed. (
Academic Press
,
London, UK
,
1998
).
7.
L. J. S.
Allen
,
An Introduction to Stochastic Processes with Applications to Biology
(
Prentice-Hall
,
Upper Saddle River, New Jersey
,
2003
).
8.
L. J. S.
Allen
, “
An introduction to stochastic epidemic models
,” in
Mathematical Epidemiology
, edited by
F.
Brauer
,
P.
van den Driessche
, and
J.
Wu
(
Springer-Verlag
,
Berlin
,
2008
), pp.
81
130
.
9.
J.
Goutsias
and
G.
Jenkinson
,
Phys. Rep.
529
,
199
264
(
2013
).
10.
C. D.
Meyer
, Jr.
,
SIAM Rev.
17
,
443
464
(
1975
).
11.
W. K.
Grassmann
,
M. I.
Taksar
, and
D. P.
Heyman
,
Oper. Res.
33
,
1107
1116
(
1985
).
12.
J.
Kohlas
,
Z. Oper. Res.
30
,
197
207
(
1986
).
13.
J. J.
Hunter
,
Spec. Matrices
4
,
151
175
(
2016
).
14.
J. J.
Hunter
,
Linear Algebra Appl.
511
,
176
202
(
2016
).
15.
J. J.
Hunter
,
Linear Algebra Appl.
549
,
100
122
(
2018
).
16.
T.
Dayar
and
N.
Akar
,
SIAM J. Matrix Anal. Appl.
27
,
396
412
(
2005
).
17.
Z.
Zhang
,
A.
Julaiti
,
B.
Hou
,
H.
Zhang
, and
G.
Chen
,
Eur. Phys. J. B
84
,
691
697
(
2011
).
18.
Z.
Zhang
,
Y.
Sheng
,
Z.
Hu
, and
G.
Chen
,
Chaos
22
,
043129
(
2012
).
19.
Z.
Zhang
,
T.
Shan
, and
G.
Chen
,
Phys. Rev. E
87
,
012112
(
2013
).
20.
N. F.
Polizzi
,
M. J.
Therien
, and
D. N.
Beratan
,
Isr. J. Chem.
56
,
816
824
(
2016
).
21.
M.
Torchala
,
P.
Chelminiak
,
M.
Kurzynski
, and
P. A.
Bates
,
BMC Syst. Biol.
7
,
130
(
2013
).
22.
D. J.
Bicout
and
A.
Szabo
,
J. Chem. Phys.
106
,
10292
10298
(
1997
).
23.
T. J.
Frankcombe
and
S. C.
Smith
,
Theor. Chem. Acc.
124
,
303
317
(
2009
).
24.
D. P.
Heyman
and
A.
Reeves
,
ORSA J. Comput.
1
,
52
60
(
1989
).
25.
B.
Philippe
,
Y.
Saad
, and
W. J.
Stewart
,
Oper. Res.
40
,
1156
1179
(
1992
).
26.
C. D.
Meyer
,
SIAM J. Matrix Anal. Appl.
15
,
715
728
(
1994
).
27.
D. P.
Heyman
and
D. P.
O’Leary
,
SIAM J. Matrix Anal. Appl.
19
,
534
540
(
1998
).
28.
J. L.
Barlow
,
SIAM J. Matrix Anal. Appl.
22
,
230
241
(
2000
).
29.
T. D.
Swinburne
,
D.
Kannan
,
D. J.
Sharpe
, and
D. J.
Wales
,
J. Chem. Phys.
153
,
134115
(
2020
).
30.
D. J.
Aldous
and
M.
Brown
, “
Inequalities for rare events in time-reversible Markov chains I
,” in
IMS Lecture Notes in Statistics
, Stochastic Inequalities Vol. 22, edited by
M.
Shaked
and
Y. L.
Tong
(
Institute of Mathematical Statistics
,
OH, USA
,
1992
), pp.
1
16
.
31.
P.
Heidelberger
,
ACM Trans. Model. Comput. Simul.
5
,
43
85
(
1995
).
32.
P.
Glasserman
,
P.
Heidelberger
,
P.
Shahabuddin
, and
T.
Zajic
,
Oper. Res.
47
,
585
600
(
1999
).
33.
A.
Bovier
,
M.
Eckhoff
,
V.
Gayrard
, and
M.
Klein
,
J. Phys. A: Math. Gen.
33
,
L447
L451
(
2000
).
34.
A.
Bovier
,
M.
Eckhoff
,
V.
Gayrard
, and
M.
Klein
,
Commun. Math. Phys.
228
,
219
255
(
2002
).
35.
S.
Juneja
and
P.
Shahabuddin
,
Manage. Sci.
47
,
547
562
(
2001
).
36.
J.
Beltrán
and
C.
Landim
,
J. Stat. Phys.
140
,
1065
1114
(
2010
).
37.
E.
Vanden-Eijnden
and
J.
Weare
,
Commun. Pure Appl. Math.
65
,
1770
1803
(
2012
).
38.
O.
Benois
,
C.
Landim
, and
M.
Mourragui
,
J. Stat. Phys.
153
,
967
990
(
2013
).
39.
C.
Hartmann
,
R.
Banisch
,
M.
Sarich
,
T.
Badowski
, and
C.
Schütte
,
Entropy
16
,
350
376
(
2014
).
40.
M.
Sarich
,
R.
Banishc
,
C.
Hartmann
, and
C.
Schütte
,
Entropy
16
,
258
286
(
2014
).
41.
M. K.
Cameron
,
J. Chem. Phys.
141
,
184113
(
2014
).
42.
T.
Gan
and
M.
Cameron
,
J. Nonlinear Sci.
27
,
927
972
(
2017
).
43.
F.
Bouchet
,
J.
Rolland
, and
J.
Wouters
,
Chaos
29
,
080402
(
2019
).
44.
S. A.
Trygubenko
and
D. J.
Wales
,
Mol. Phys.
104
,
1497
1507
(
2006
).
45.
S. A.
Trygubenko
and
D. J.
Wales
,
J. Chem. Phys.
124
,
234110
(
2006
).
46.
D. J.
Wales
,
Int. Rev. Phys. Chem.
25
,
237
282
(
2006
).
47.
D. J.
Wales
,
J. Chem. Phys.
130
,
204111
(
2009
).
48.
J. D.
Stevenson
and
D. J.
Wales
,
J. Chem. Phys.
141
,
041104
(
2014
).
49.
R. S.
MacKay
and
J. D.
Robinson
,
Philos. Trans. R. Soc., A
376
,
20170232
(
2018
).
50.
B.
Trendelkamp-Schroer
and
F.
Noé
,
J. Chem. Phys.
138
,
164113
(
2013
).
51.
B.
Trendelkamp-Schroer
,
H.
Wu
,
F.
Paul
, and
F.
Noé
,
J. Chem. Phys.
143
,
174101
(
2015
).
52.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
53.
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
,
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
, 1st ed. (
Springer
,
The Netherlands
,
2014
).
54.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
,
Methods
52
,
99
105
(
2010
).
55.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
2896
(
2018
).
56.
A.
Mardt
,
L.
Pasquali
,
H.
Wu
, and
F.
Noé
,
Nat. Commun.
9
,
4443
(
2018
).
57.
N.-V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
6069
(
2008
).
58.
R. T.
McGibbon
and
V. S.
Pande
,
J. Chem. Phys.
143
,
034109
(
2015
).
59.
D. T.
Crommelin
and
E.
Vanden-Eijnden
,
J. Comput. Phys.
217
,
782
805
(
2006
).
60.
P.
Metzner
,
E.
Dittmer
,
T.
Jahnke
, and
C.
Schütte
,
J. Comput. Phys.
227
,
353
375
(
2007
).
61.
D. R.
Barr
and
M. U.
Thomas
,
Oper. Res.
25
,
1028
1031
(
1977
).
62.
F.
Ball
and
G. F.
Yeo
,
J. Appl. Probab.
30
,
518
528
(
1993
).
63.
P.
Buchholz
,
J. Appl. Probab.
31
,
59
75
(
1994
).
64.
T.
Dayar
and
W. J.
Stewart
,
SIAM J. Matrix Anal. Appl.
18
,
482
498
(
1997
).
65.
S.
Derisavi
,
H.
Hermanns
, and
W. H.
Sanders
,
Inf. Proc. Lett.
87
,
309
315
(
2003
).
66.
W.
E
,
T.
Li
, and
E.
Vanden-Eijnden
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
7907
7912
(
2008
).
67.
V. B.
Yap
,
J. Appl. Probab.
46
,
497
506
(
2009
).
68.
A. M. S.
Barreto
and
M. D.
Fragoso
,
IFAC Proc. Vol.
44
,
4206
4211
(
2011
).
69.
M. N.
Katehakis
and
L. C.
Smit
,
Probab. Eng. Inf. Sci.
26
,
483
508
(
2012
).
70.
J. A.
Ward
and
M.
López-García
,
Appl. Network Sci.
4
,
108
(
2019
).
71.
P.
Deuflhard
,
W.
Huisinga
,
A.
Fischer
, and
C.
Schütte
,
Linear Algebra Appl.
315
,
39
59
(
2000
).
72.
P.
Deuflhard
and
M.
Weber
,
Linear Algebra Appl.
398
,
161
184
(
2005
).
73.
S.
Kube
and
M.
Weber
,
J. Chem. Phys.
126
,
024103
(
2007
).
74.
W.
Wang
,
T.
Liang
,
F. K.
Sheong
,
X.
Fan
, and
X.
Huang
,
J. Chem. Phys.
149
,
072337
(
2018
).
75.
A. B.
Bortz
,
M. H.
Kalos
, and
J. L.
Lebowitz
,
J. Comput. Phys.
17
,
10
18
(
1975
).
76.
M. A.
Novotny
,
Phys. Rev. Lett.
74
,
1
5
(
1995
).
77.
R. J.
Allen
,
C.
Valeriani
, and
P. R.
ten Wolde
,
J. Phys.: Condens. Matter
21
,
463102
(
2009
).
78.
J. T.
Berryman
and
T.
Schilling
,
J. Chem. Phys.
133
,
244101
(
2010
).
79.
M.
Athènes
and
V. V.
Bulatov
,
Phys. Rev. Lett.
113
,
230601
(
2014
).
80.
M.
Athènes
,
S.
Kaur
,
G.
Adjanor
,
T.
Vanacker
, and
T.
Jourdan
,
Phys. Rev. Mater.
3
,
103802
(
2019
).
81.
D. J.
Sharpe
and
D. J.
Wales
,
J. Chem. Phys.
153
,
024121
(
2020
).
82.
D. P.
Heyman
,
SIAM J. Matrix Anal. Appl.
16
,
954
963
(
1995
).
83.
T. J.
Sheskin
,
Int. J. Math. Educ. Sci. Technol.
26
,
729
735
(
1995
).
84.
D. P.
Heyman
and
D. P.
O’Leary
, “
What is fundamental for Markov chains: First passage times, fundamental matrices, and group generalized inverses
,” in
Computations with Markov Chains
, edited by
W. J.
Stewart
(
Springer
,
Boston, MA
,
1995
), pp.
151
161
.
85.
I.
Sonin
,
Adv. Math.
145
,
159
188
(
1999
).
86.
I.
Sonin
and
J.
Thornton
,
SIAM J. Matrix Anal. Appl.
23
,
209
224
(
2001
).
87.
D.
Gfeller
,
P.
De Los Rios
,
A.
Caflisch
, and
F.
Rao
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
1817
1822
(
2007
).
88.
G. R.
Bowman
and
V. S.
Pande
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
10890
10895
(
2010
).
89.
E.
Vanden-Eijnden
,
M.
Venturoli
,
G.
Ciccotti
, and
R.
Elber
,
J. Chem. Phys.
129
,
174102
(
2008
).
91.
A. M.
Berezhkovskii
and
A.
Szabo
,
J. Chem. Phys.
150
,
054106
(
2019
).
92.
A.
Kells
,
V.
Koskin
,
E.
Rosta
, and
A.
Annibale
,
J. Chem. Phys.
152
,
104108
(
2020
).
93.
J. G.
Kemeny
,
Linear Algebra Appl.
38
,
193
206
(
1981
).
94.
M.
Levene
and
G.
Loizou
,
Amer. Math. Monthly
109
,
741
745
(
2002
).
95.
P.
Doyle
, “
The Kemeny constant of a Markov chain
,” arXiv:0909.2636 (
2009
).
96.
J. J.
Hunter
,
Commun. Stat.: Theory Methods
43
,
1309
1321
(
2014
).
97.
D.
Bini
,
J. J.
Hunter
,
G.
Latouche
,
B.
Meini
, and
P.
Taylor
,
J. Appl. Probab.
55
,
1025
1036
(
2018
).
98.
J.
Pitman
and
W.
Tang
,
Bernoulli
24
,
1942
1972
(
2018
).
99.
J.
Berkhout
and
B. F.
Heidergott
,
Oper. Res.
67
,
892
904
(
2019
).
100.
G.
Hummer
and
A.
Szabo
,
J. Phys. Chem. B
119
,
9029
9037
(
2015
).
101.
D. J.
Wales
and
P.
Salamon
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
617
622
(
2014
).
102.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
,
Multiscale Model. Simul.
7
,
1192
1219
(
2009
).
103.
J. G.
Kemeny
and
J. L.
Snell
,
Theory Prob. Appl.
6
,
101
105
(
1961
).
104.
S. A.
Serebrinsky
,
Phys. Rev. E
83
,
037701
(
2011
).
105.
T. D.
Swinburne
and
D. J.
Wales
,
J. Chem. Theory Comput.
16
,
2661
2679
(
2020
).
106.
W.
Grassmann
and
D. A.
Stanford
, “
Matrix analytic methods
,” in
Computational Probability
, edited by
W.
Grassmann
(
Springer
,
New York
,
2000
), pp.
153
203
.
107.
T. J.
Sheskin
,
Oper. Res.
33
,
228
235
(
1985
).
108.
C. D.
Meyer
, Jr.
,
SIAM Rev.
31
,
240
272
(
1989
).
109.
R. L.
Jack
and
P.
Sollich
,
Prog. Theor. Phys. Suppl.
184
,
304
317
(
2010
).
110.
D. J.
Sharpe
and
D. J.
Wales
,
J. Chem. Phys.
151
,
124101
(
2019
).
111.
D. D.
Yao
,
J. Appl. Probab.
22
,
939
945
(
1985
).
112.
P.
Coolen-Schrijner
and
E. A.
van Doorn
,
Probab. Eng. Inf. Sci.
16
,
351
366
(
2002
).
113.
J.-H.
Prinz
,
M.
Held
,
J. C.
Smith
, and
F.
Noé
,
Multiscale Model. Simul.
9
,
545
567
(
2011
).
114.
115.
J. J.
Hunter
,
Linear Algebra Appl.
417
,
108
123
(
2006
).
116.
S.
Kirkland
,
Linear Algebra Appl.
433
,
1988
1996
(
2010
).
117.
G. H.
Weiss
,
Adv. Chem. Phys.
13
,
1
18
(
1967
).
118.
I.
Procaccia
,
S.
Mukamel
, and
J.
Ross
,
J. Chem. Phys.
68
,
3244
3253
(
1978
).
119.
T. A.
Davis
,
ACM Trans. Math. Software
30
,
196
199
(
2004
).
120.
R. G.
Grimes
,
J. G.
Lewis
, and
H. D.
Simon
,
SIAM J. Matrix Anal. Appl.
15
,
228
272
(
1994
).
121.
D. C.
Sorensen
, “
Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations
,” in
Parallel Numerical Algorithms
, edited by
D.
Keyes
,
A.
Sameh
, and
V.
Venkatakrishnan
(
Springer
,
Dordrecht
,
1997
), pp.
119
165
.
122.
Y.
Saad
,
Linear Algebra Appl.
34
,
269
295
(
1980
).
123.
C. C.
Paige
,
Linear Algebra Appl.
34
,
235
258
(
1980
).
124.
C. R.
MacCluer
,
SIAM Rev.
42
,
487
498
(
2000
).
125.
M.
Cameron
and
E.
Vanden-Eijnden
,
J. Stat. Phys.
156
,
427
454
(
2014
).
126.
H. D.
Simon
,
Linear Algebra Appl.
61
,
101
131
(
1984
).
127.
G.
Meurant
,
The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations
(
SIAM
,
Philadelphia, USA
,
2006
).
128.
R. E.
Funderlic
and
C. D.
Meyer
,
Linear Algebra Appl.
76
,
1
17
(
1986
).
129.
G. H.
Golub
and
C. D.
Meyer
, Jr.
,
SIAM J. Algebraic Discrete Methods
7
,
273
281
(
1986
).
130.
G. D.
Zhang
,
SIAM J. Matrix Anal. Appl.
14
,
1112
1123
(
1993
).
131.
I. C. F.
Ipsen
and
C. D.
Meyer
,
SIAM J. Matrix Anal. Appl.
15
,
1061
1074
(
1994
).
132.
G. E.
Cho
and
C. D.
Meyer
,
Linear Algebra Appl.
316
,
21
28
(
2000
).
133.
J. J.
Hunter
, “
Perturbed Markov chains
,” in
Contributions to Probability and Statistics: Applications and Challenges
, edited by
P.
Brown
,
S.
Liu
, and
D.
Sharma
(
World Scientific
,
Singapore
,
2006
), pp.
99
112
.
134.
J. J.
Hunter
,
Linear Algebra Appl.
410
,
217
243
(
2005
).
135.
Y.
Saad
, “
Preconditioned Krylov subspace methods for the numerical solution of Markov chains
,” in
Computations with Markov Chains
, edited by
W. J.
Stewart
(
Springer
,
Boston, MA
,
1995
), pp.
49
64
.
136.
Y.
Saad
,
Numerical Methods for Large Eigenvalue Problems
(
SIAM
,
Philadelphia, USA
,
2011
).
137.
B.
Peters
,
Reaction Rate Theory and Rare Events
(
Elsevier
,
Oxford, UK
,
2017
).
138.
M.
Cameron
and
T.
Gan
,
Mol. Simul.
42
,
1410
1428
(
2016
).
139.
S.
Fortunato
,
Phys. Rep.
486
,
75
174
(
2010
).
140.
M.
Haviv
,
SIAM J. Numer. Anal.
24
,
952
966
(
1987
).
141.
T.
Dayar
and
W. J.
Stewart
,
SIAM J. Sci. Comput.
17
,
287
303
(
1996
).
142.
R.
Zwanzig
,
J. Stat. Phys.
30
,
255
262
(
1983
).
143.
A.
Berezhkovski
,
G.
Hummer
, and
A.
Szabo
,
J. Chem. Phys.
130
,
205102
(
2009
).
144.
A.
Kells
,
Z. É.
Mihálka
,
A.
Annibale
, and
E.
Rosta
,
J. Chem. Phys.
150
,
134107
(
2019
).
145.
M.
Bastian
,
S.
Heymann
, and
M.
Jacomy
, “
Gephi: An open source software for exploring and manipulating networks
,” in
International AAAI Conference on Weblogs and Social Media
,
2009
.
146.
D. J.
Sharpe
and
D. J.
Wales
, “
Dimensionality reduction of finite Markov chains using efficient dynamical simulations
” (unpublished) (
2020
).
147.
J. K.
Weber
and
V. S.
Pande
,
J. Chem. Theory Comput.
7
,
3405
3411
(
2011
).
148.
J. K.
Weber
and
V. S.
Pande
,
J. Chem. Phys.
142
,
215105
(
2015
).
149.
A. M. A.
West
,
R.
Elber
, and
D.
Shalloway
,
J. Chem. Phys.
126
,
145104
(
2007
).
150.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
19016
(
2009
).
151.
J. R.
Bunch
,
Linear Algebra Appl.
88-89
,
49
66
(
1987
).
152.
E.
Anderson
,
Z.
Bai
,
C.
Bischof
,
S.
Blackford
,
J.
Demmel
,
J.
Dongarra
,
J.
Du Croz
,
A.
Greenbaum
,
S.
Hammarling
,
A.
McKenney
, and
D.
Sorensen
,
LAPACK Users’ Guide
, 3rd ed. (
SIAM
,
Philadelphia, PA
,
1999
).
153.
D.
Kannan
,
D. J.
Sharpe
,
T. D.
Swinburne
, and
D. J.
Wales
, “
Dimensionality reduction of finite Markov chains by renormalization
” (unpublished) (
2020
).
154.
H.
Caswell
,
Numer. Linear Algebra Appl.
18
,
901
917
(
2011
).
155.
J. J.
Hunter
,
Res. Lett. Inf. Math Sci.
1
,
25
36
(
2000
); available at http://hdl.handle.net/10179/4379
156.
J. J.
Hunter
,
Linear Algebra Appl.
45
,
157
198
(
1982
).
157.
J. J.
Hunter
,
Linear Algebra Appl.
102
,
121
142
(
1988
).
158.
J. J.
Hunter
,
Linear Algebra Appl.
127
,
71
84
(
1990
).
159.
J. J.
Hunter
,
Linear Algebra Appl.
447
,
38
55
(
2014
).
160.
J. J.
Hunter
,
Linear Algebra Appl.
429
,
1135
1162
(
2008
).

Supplementary Material

You do not currently have access to this content.