Lattice-switch Monte Carlo and the related diabat methods have emerged as efficient and accurate ways to compute free energy differences between polymorphs. In this work, we introduce a one-to-one mapping from the reference positions and displacements in one molecular crystal to the positions and displacements in another. Two features of the mapping facilitate lattice-switch Monte Carlo and related diabat methods for computing polymorph free energy differences. First, the mapping is unitary so that its Jacobian does not complicate the free energy calculations. Second, the mapping is easily implemented for molecular crystals of arbitrary complexity. We demonstrate the mapping by computing free energy differences between polymorphs of benzene and carbamazepine. Free energy calculations for thermodynamic cycles, each involving three independently computed polymorph free energy differences, all return to the starting free energy with a high degree of precision. The calculations thus provide a force field independent validation of the method and allow us to estimate the precision of the individual free energy differences.

1.
W. E.
Addison
,
The Allotropy of the Elements
(
American Elsevier Publishing Company
,
1964
).
2.
A.
Putnis
,
An Introduction to Mineral Sciences
(
Cambridge University Press
,
1992
).
3.
J.
Bernstein
,
Polymorphism in Molecular Crystals
(
Oxford University Press
,
2002
), Vol. 14.
4.
W.
Yan
,
B.
Chen
,
S. M.
Mahurin
,
V.
Schwartz
,
D. R.
Mullins
,
A. R.
Lupini
,
S. J.
Pennycook
,
S.
Dai
, and
S. H.
Overbury
, “
Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO
,”
J. Phys. Chem. B
109
(
21
),
10676
10685
(
2005
).
5.
D. M.
Robinson
,
Y. B.
Go
,
M.
Mui
,
G.
Gardner
,
Z.
Zhang
,
D.
Mastrogiovanni
,
E.
Garfunkel
,
J.
Li
,
M.
Greenblatt
, and
G. C.
Dismukes
, “
Photochemical water oxidation by crystalline polymorphs of manganese oxides: Structural requirements for catalysis
,”
J. Am. Chem. Soc.
135
(
9
),
3494
3501
(
2013
).
6.
W. L.
Kwong
,
C. C.
Lee
,
A.
Shchukarev
,
E.
Björn
, and
J.
Messinger
, “
High-performance iron (III) oxide electrocatalyst for water oxidation in strongly acidic media
,”
J. Catal.
365
,
29
35
(
2018
).
7.
B.
Zheng
,
W.
Hua
,
Y.
Yue
, and
Z.
Gao
, “
Dehydrogenation of propane to propene over different polymorphs of gallium oxide
,”
J. Catal.
232
(
1
),
143
151
(
2005
).
8.
X.
Chen
,
Y.
Luo
,
J.
Zhang
,
K.
Jiang
,
J. B.
Pendry
, and
S.
Zhang
, “
Macroscopic invisibility cloaking of visible light
,”
Nat. Commun.
2
(
1
),
176
(
2011
).
9.
T.
Wonglakhon
and
D.
Zahn
, “
Interaction potentials for modelling GaN precipitation and solid state polymorphism
,”
J. Phys.: Condens. Matter
32
(
20
),
205401
(
2020
).
10.
K.
Wang
,
H.
Zhang
,
S.
Chen
,
G.
Yang
,
J.
Zhang
,
W.
Tian
,
Z.
Su
, and
Y.
Wang
, “
Organic polymorphs: One-compound-based crystals with molecular-conformation- and packing-dependent luminescent properties
,”
Adv. Mater.
26
(
35
),
6168
6173
(
2014
).
11.
T.
Beyer
,
G. M.
Day
, and
S. L.
Price
, “
The prediction, morphology, and mechanical properties of the polymorphs of paracetamol
,”
J. Am. Chem. Soc.
123
(
21
),
5086
5094
(
2001
).
12.
C.
Sun
and
D. J.
Grant
, “
Influence of crystal structure on the tableting properties of sulfamerazine polymorphs
,”
Pharm. Res.
18
(
3
),
274
280
(
2001
).
13.
R.
Censi
and
P.
Di Martino
, “
Polymorph impact on the bioavailability and stability of poorly soluble drugs
,”
Molecules
20
(
10
),
18759
18776
(
2015
).
14.
C. A.
Lipinski
,
F.
Lombardo
,
B. W.
Dominy
, and
P. J.
Feeney
, “
Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
,”
Adv. Drug Delivery Rev.
23
(
1
),
3
25
(
1997
).
15.
J.
Aaltonen
,
M.
Alleso
,
S.
Mirza
,
V.
Koradia
,
K.
Gordon
, and
J.
Rantanen
, “
Solid form screening—A review
,”
Eur. J. Pharm. Biopharm.
71
(
1
),
23
37
(
2009
).
16.
G. R.
Desiraju
, “
Crystal engineering: A brief overview
,”
J. Chem. Sci.
122
(
5
),
667
675
(
2010
).
17.
S.
Price
, “
The computational prediction of pharmaceutical crystal structures and polymorphism
,”
Adv. Drug Delivery Rev.
56
(
3
),
301
319
(
2004
).
18.
S. L.
Price
,
D. E.
Braun
, and
S. M.
Reutzel-Edens
, “
Can computed crystal energy landscapes help understand pharmaceutical solids?
,”
Chem. Commun.
52
(
44
),
7065
7077
(
2016
).
19.
J.
Kendrick
,
F. J. J.
Leusen
,
M. A.
Neumann
, and
J.
van de Streek
, “
Progress in crystal structure prediction
,”
Chem. Eur. J.
17
(
38
),
10736
10744
(
2011
).
20.
G. M.
Day
, “
Current approaches to predicting molecular organic crystal structures
,”
Crystallogr. Rev.
17
(
1
),
3
52
(
2011
).
21.
C. C.
Pantelides
,
C. S.
Adjiman
, and
A. V.
Kazantsev
, “
General computational algorithms for ab initio crystal structure prediction for organic molecules
, in
Prediction and Calculation of Crystal Structures
(
Springer
,
2014
), pp.
25
58
.
22.
G. J. O.
Beran
, “
Modeling polymorphic molecular crystals with electronic structure theory
,”
Chem. Rev.
116
(
9
),
5567
5613
(
2016
).
23.
T.-Q.
Yu
and
M. E.
Tuckerman
, “
Temperature-accelerated method for exploring polymorphism in molecular crystals based on free energy
,”
Phys. Rev. Lett.
107
(
1
),
015701
(
2011
).
24.
B.
Peters
, “
Competing nucleation pathways in a mixture of oppositely charged colloids: Out-of-equilibrium nucleation revisited
,”
J. Chem. Phys.
131
(
24
),
244103
(
2009
).
25.
N.
Duff
,
Y. R.
Dahal
,
J. D.
Schmit
, and
B.
Peters
, “
Salting out the polar polymorph: Analysis by alchemical solvent transformation
,”
J. Chem. Phys.
140
(
1
),
014501
(
2014
).
26.
M.
Salvalaglio
,
C.
Perego
,
F.
Giberti
,
M.
Mazzotti
, and
M.
Parrinello
, “
Molecular-dynamics simulations of urea nucleation from aqueous solution
,”
Proc. Natl. Acad. Sci. U. S. A.
112
(
1
),
E6
E14
(
2015
).
27.
G. C.
Sosso
,
J.
Chen
,
S. J.
Cox
,
M.
Fitzner
,
P.
Pedevilla
,
A.
Zen
, and
A.
Michaelides
, “
Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations
,”
Chem. Rev.
116
(
12
),
7078
7116
(
2016
).
28.
M. N.
Joswiak
,
B.
Peters
, and
M. F.
Doherty
, “
In silico crystal growth rate prediction for NaCl from aqueous solution
,”
Cryst. Growth Des.
18
(
10
),
6302
6306
(
2018
).
29.
D.
Han
,
T.
Karmakar
,
Z.
Bjelobrk
,
J.
Gong
, and
M.
Parrinello
, “
Solvent-mediated morphology selection of the active pharmaceutical ingredient isoniazid: Experimental and simulation studies
,”
Chem. Eng. Sci.
204
,
320
328
(
2019
).
30.
M.
Salvalaglio
,
T.
Vetter
,
M.
Mazzotti
, and
M.
Parrinello
, “
Controlling and predicting crystal shapes: The case of urea
,”
Angew. Chem., Int. Ed.
52
(
50
),
13369
13372
(
2013
).
31.
A. J.
Cruz-Cabeza
,
S. M.
Reutzel-Edens
, and
J.
Bernstein
, “
Facts and fictions about polymorphism
,”
Chem. Soc. Rev.
44
(
23
),
8619
8635
(
2015
).
32.
J.
Nyman
and
G. M.
Day
, “
Static and lattice vibrational energy differences between polymorphs
,”
CrystEngComm
17
(
28
),
5154
5165
(
2015
).
33.
S. R.
Whittleton
,
A.
Otero-de-la-Roza
, and
E. R.
Johnson
, “
Exchange-hole dipole dispersion model for accurate energy ranking in molecular crystal structure prediction
,”
J. Chem. Theory Comput.
13
(
2
),
441
450
(
2017
).
34.
J. G.
Brandenburg
,
T.
Maas
, and
S.
Grimme
, “
Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs
,”
J. Chem. Phys.
142
(
12
),
124104
(
2015
).
35.
K.
Hongo
,
M. A.
Watson
,
R. S.
Sánchez-Carrera
,
T.
Iitaka
, and
A.
Aspuru-Guzik
, “
Failure of conventional density functionals for the prediction of molecular crystal polymorphism: A quantum Monte Carlo study
,”
J. Phys. Chem. Lett.
1
(
12
),
1789
1794
(
2010
).
36.
J.
Yang
,
W.
Hu
,
D.
Usvyat
,
D.
Matthews
,
M.
Schütz
, and
G. K.-L.
Chan
,
Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy
,”
Science
345
(
6197
),
640
643
(
2014
).
37.
G. J. O.
Beran
, “
A new era for ab initio molecular crystal lattice energy prediction
,”
Angew. Chem., Int. Ed.
54
(
2
),
396
398
(
2015
).
38.
J.
Hoja
,
H.-Y.
Ko
,
M. A.
Neumann
,
R.
Car
,
R. A.
DiStasio
, and
A.
Tkatchenko
, “
Reliable and practical computational description of molecular crystal polymorphs
,”
Sci. Adv.
5
(
1
),
eaau3338
(
2019
).
39.
A. M.
Reilly
and
A.
Tkatchenko
, “
Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal
,”
Phys. Rev. Lett.
113
(
5
),
055701
(
2014
).
40.
J. G.
Brandenburg
,
J.
Potticary
,
H. A.
Sparkes
,
S. L.
Price
, and
S. R.
Hall
, “
Thermal expansion of carbamazepine: Systematic crystallographic measurements challenge quantum chemical calculations
,”
J. Phys. Chem. Lett.
8
(
17
),
4319
4324
(
2017
).
41.
J. L.
McKinley
and
G. J. O.
Beran
, “
Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion
,”
Faraday Discuss.
211
,
181
207
(
2018
).
42.
N. S.
Abraham
and
M. R.
Shirts
, “
Statistical mechanical approximations to more efficiently determine polymorph free energy differences for small organic molecules
,”
J. Chem. Theory Comput.
16
(
10
),
6503
6512
(
2020
).
43.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
).
44.
I. J.
Nessler
,
J. M.
Litman
, and
M. J.
Schnieders
, “
Toward polarizable AMOEBA thermodynamics at fixed charge efficiency using a dual force field approach: Application to organic crystals
,”
Phys. Chem. Chem. Phys.
18
(
44
),
30313
30322
(
2016
).
45.
E.
Schneider
,
L.
Vogt
, and
M. E.
Tuckerman
, “
Exploring polymorphism of benzene and naphthalene with free energy based enhanced molecular dynamics
,”
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
72
(
4
),
542
550
(
2016
).
46.
E. C.
Dybeck
,
N. S.
Abraham
,
N. P.
Schieber
, and
M. R.
Shirts
, “
Capturing entropic contributions to temperature-mediated polymorphic transformations through molecular modeling
,”
Cryst. Growth Des.
17
(
4
),
1775
1787
(
2017
).
47.
D.
Frenkel
and
A. J. C.
Ladd
, “
New Monte Carlo method to compute the free energy of arbitrary solids. Application to the FCC and HCP phases of hard spheres
,”
J. Chem. Phys.
81
(
7
),
3188
3193
(
1984
).
48.
C.
Vega
and
E. G.
Noya
, “
Revisiting the Frenkel–Ladd method to compute the free energy of solids: The Einstein molecule approach
,”
J. Chem. Phys.
127
(
15
),
154113
(
2007
).
49.
M.
Yang
,
E.
Dybeck
,
G.
Sun
,
C.
Peng
,
B.
Samas
,
V. M.
Burger
,
Q.
Zeng
,
Y.
Jin
,
M. A.
Bellucci
,
Y.
Liu
et al., “
Prediction of the relative free energies of drug polymorphs above zero Kelvin
,”
Cryst. Growth Des.
20
(
8
),
5211
5224
(
2020
).
50.
R.
Martoňák
,
D.
Donadio
,
A. R.
Oganov
, and
M.
Parrinello
, “
Crystal structure transformations in SiO2 from classical and ab initio metadynamics
,”
Nat. Mater.
5
(
8
),
623
626
(
2006
).
51.
P.
Raiteri
,
R.
Martoňák
, and
M.
Parrinello
, “
Exploring polymorphism: The case of benzene
,”
Angew. Chem., Int. Ed.
44
(
24
),
3769
3773
(
2005
).
52.
A. D.
Bruce
,
N. B.
Wilding
, and
G. J.
Ackland
, “
Free energy of crystalline solids: A lattice-switch Monte Carlo method
,”
Phys. Rev. Lett.
79
(
16
),
3002
(
1997
).
53.
A. D.
Bruce
,
A. N.
Jackson
,
G. J.
Ackland
, and
N. B.
Wilding
, “
Lattice-switch Monte Carlo method
,”
Phys. Rev. E
61
(
1
),
906
(
2000
).
54.
K.
Kamat
and
B.
Peters
, “
Diabat interpolation for polymorph free-energy differences
,”
J. Phys. Chem. Lett.
8
(
3
),
655
660
(
2017
).
55.
K.
Kamat
and
B.
Peters
, “
Gibbs free-energy differences between polymorphs via a diabat approach
,”
J. Chem. Phys.
149
(
21
),
214106
(
2018
).
56.
R. W.
Zwanzig
, “
High-temperature equation of state by a perturbation method. I. Nonpolar gases
,”
J. Chem. Phys.
22
(
8
),
1420
1426
(
1954
).
57.
C. H.
Bennett
, “
Efficient estimation of free energy differences from Monte Carlo data
,”
J. Comput. Phys.
22
(
2
),
245
268
(
1976
).
58.
A. N.
Jackson
,
A. D.
Bruce
, and
G. J.
Ackland
, “
Lattice-switch Monte Carlo method: Application to soft potentials
,”
Phys. Rev. E
65
(
3
),
036710
(
2002
).
59.
T. L.
Underwood
and
G. J.
Ackland
, “
Monteswitch: A package for evaluating solid–solid free energy differences via lattice-switch Monte Carlo
,”
Comput. Phys. Commun.
215
,
204
222
(
2017
).
60.
S.
Bridgwater
and
D.
Quigley
, “
Lattice-switching Monte Carlo method for crystals of flexible molecules
,”
Phys. Rev. E
90
(
6
),
063313
(
2014
).
61.
S.
Bridgwater
, “
Accurate free energy methods for model organic solids
,” Ph.D. thesis,
University of Warwick
,
2014
.
62.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
(
6
),
1087
1092
(
1953
).
63.
G. R.
Smith
and
A. D.
Bruce
, “
A study of the multi-canonical Monte Carlo method
,”
J. Phys. Math. Gen.
28
(
23
),
6623
(
1995
).
64.
M.
Fitzgerald
,
R. R.
Picard
, and
R. N.
Silver
, “
Canonical transition probabilities for adaptive metropolis simulation
,”
Europhys. Lett.
46
(
3
),
282
(
1999
).
65.
J. K.
Hwang
and
A.
Warshel
, “
Microscopic examination of free-energy relationships for electron transfer in polar solvents
,”
J. Am. Chem. Soc.
109
(
3
),
715
720
(
1987
).
66.
J.
Blumberger
,
I.
Tavernelli
,
M. L.
Klein
, and
M.
Sprik
, “
Diabatic free energy curves and coordination fluctuations for the aqueous Ag+/Ag2+ redox couple: A biased Born–Oppenheimer molecular dynamics investigation
,”
J. Chem. Phys.
124
(
6
),
064507
(
2006
).
67.
M.
Tachiya
, “
Relation between the electron-transfer rate and the free energy change of reaction
,”
J. Phys. Chem.
93
(
20
),
7050
7052
(
1989
).
68.
D. W.
Small
,
D. V.
Matyushov
, and
G. A.
Voth
, “
The theory of electron transfer reactions: What may Be missing?
,”
J. Am. Chem. Soc.
125
(
24
),
7470
7478
(
2003
).
69.
Y.
Tateyama
,
J.
Blumberger
,
M.
Sprik
, and
I.
Tavernelli
, “
Density-functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes
,”
J. Chem. Phys.
122
(
23
),
234505
(
2005
).
70.
M. M.
Thiéry
and
J. M.
Léger
, “
High pressure solid phases of benzene. I. Raman and X-ray studies of C6H6 at 294 K up to 25 GPa
,”
J. Chem. Phys.
89
(
7
),
4255
4271
(
1988
).
71.
T.
Shoda
,
K.
Yamahara
,
K.
Okazaki
, and
D. E.
Williams
, “
Molecular packing analysis of benzene crystals. Part 2. Prediction of experimental crystal structure polymorphs at low and high pressure
,”
J. Mol. Struct.: THEOCHEM
333
(
3
),
267
274
(
1995
).
72.
F.
Cansell
,
D.
Fabre
, and
J. P.
Petitet
, “
Phase transitions and chemical transformations of benzene up to 550 °C and 30 GPa
,”
J. Chem. Phys.
99
(
10
),
7300
7304
(
1993
).
73.
W. L.
Jorgensen
and
J.
Tirado-Rives
, “
The OPLS (optimized potentials for liquid simulations) potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin
,”
J. Am. Chem. Soc.
110
(
6
),
1657
1666
(
1988
).
74.
L. S.
Dodda
,
I.
Cabeza de Vaca
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands
,”
Nucleic Acids Res.
45
(
W1
),
W331
W336
(
2017
).
75.
A.
Budzianowski
and
A.
Katrusiak
, “
Pressure-frozen benzene I revisited
,”
Acta Crystallogr., Sect. B: Struct. Sci.
62
(
1
),
94
101
(
2006
).
76.
G. J.
Piermarini
,
A. D.
Mighell
,
C. E.
Weir
, and
S.
Block
, “
Crystal structure of benzene II at 25 kilobars
,”
Science
165
(
3899
),
1250
1255
(
1969
).
77.
C. F.
Macrae
,
I. J.
Bruno
,
J. A.
Chisholm
,
P. R.
Edgington
,
P.
McCabe
,
E.
Pidcock
,
L.
Rodriguez-Monge
,
R.
Taylor
,
J.
van de Streek
, and
P. A.
Wood
, “
Mercury CSD 2.0—New features for the visualization and investigation of crystal structures
,”
J. Appl. Crystallogr.
41
(
2
),
466
470
(
2008
).
78.
S. J.
Leon
,
I.
Bica
, and
T.
Hohn
,
Linear Algebra with Applications
(
Pearson Prentice Hall Upper
,
Saddle River, NJ, USA
,
2006
).
79.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
(
8
),
1011
1021
(
1992
).
80.
B.
Roux
, “
The calculation of the potential of mean force using computer simulations
,”
Comput. Phys. Commun.
91
(
1–3
),
275
282
(
1995
).
81.
A.
Grossfield
, “
WHAM: The weighted histogram analysis method
,”
Version
2
(
9
),
06
(
2012
).
82.
F. H.
Allen
, “
The Cambridge structural Database: A quarter of a million crystal structures and rising
,”
Acta Crystallogr., Sect. B: Struct. Sci.
58
(
3
),
380
388
(
2002
).
83.
C. R.
Groom
and
F. H.
Allen
, “
The Cambridge structural database in retrospect and prospect
,”
Angew. Chem., Int. Ed.
53
(
3
),
662
671
(
2014
).
84.
L.
D’Ascenzo
and
P.
Auffinger
, “
A comprehensive classification and nomenclature of carboxyl–carboxyl(Ate) supramolecular motifs and related catemers: Implications for biomolecular systems
,”
Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.
71
(
Pt 2
),
164
175
(
2015
).
85.
T.
Beyer
and
S. L.
Price
, “
Dimer or catemer? Low-energy crystal packings for small carboxylic acids
,”
J. Phys. Chem. B
104
(
12
),
2647
2655
(
2000
).
86.
J.-B.
Arlin
,
L. S.
Price
,
S. L.
Price
, and
A. J.
Florence
, “
A strategy for producing predicted polymorphs: Catemeric carbamazepine form V
,”
Chem. Commun.
47
(
25
),
7074
7076
(
2011
).
87.
A. L.
Grzesiak
,
M.
Lang
,
K.
Kim
, and
A. J.
Matzger
, “
Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I
,”
J. Pharm. Sci.
92
(
11
),
2260
2271
(
2003
).
88.
A. J.
Florence
,
A.
Johnston
,
S. L.
Price
,
H.
Nowell
,
A. R.
Kennedy
, and
N.
Shankland
, “
An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine
,”
J. Pharm. Sci.
95
(
9
),
1918
1930
(
2006
).
89.
K.
Park
,
J. M. B.
Evans
, and
A. S.
Myerson
, “
Determination of solubility of polymorphs using differential scanning calorimetry
,”
Cryst. Growth Des.
3
(
6
),
991
995
(
2003
).
90.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
(
9
),
1157
1174
(
2004
).
91.
J.
Wang
,
W.
Wang
,
P. A.
Kollman
, and
D. A.
Case
, “
Automatic atom type and bond type perception in molecular mechanical calculations
,”
J. Mol. Graphics Modell.
25
(
2
),
247
260
(
2006
).
92.
J.
Nyman
and
G. M.
Day
, “
Modelling temperature-dependent properties of polymorphic organic molecular crystals
,”
Phys. Chem. Chem. Phys.
18
(
45
),
31132
31143
(
2016
).
93.
S. L.
Price
,
M.
Leslie
,
G. W. A.
Welch
,
M.
Habgood
,
L. S.
Price
,
P. G.
Karamertzanis
, and
G. M.
Day
, “
Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials
,”
Phys. Chem. Chem. Phys.
12
(
30
),
8478
8490
(
2010
).
94.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I.
Probert
,
K.
Refson
, and
M. C.
Payne
, “
First principles methods using CASTEP
,”
Z. Kristallogr.-Cryst. Mater.
220
(
5–6
),
567
570
(
2005
).
95.
A.
Tkatchenko
and
M.
Scheffler
, “
Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data
,”
Phys. Rev. Lett.
102
(
7
),
073005
(
2009
).
96.
A.
Ambrosetti
,
A. M.
Reilly
,
R. A.
DiStasio
, Jr.
, and
A.
Tkatchenko
, “
Long-range correlation energy calculated from coupled atomic response functions
,”
J. Chem. Phys.
140
(
18
),
18A508
(
2014
).
97.
R. J.
Behme
and
D.
Brooke
, “
Heat of fusion measurement of a low melting polymorph of carbamazepine that undergoes multiple-phase changes during differential scanning calorimetry analysis
,”
J. Pharm. Sci.
80
(
10
),
986
990
(
1991
).
98.
E. C.
Dybeck
,
D. P.
McMahon
,
G. M.
Day
, and
M. R.
Shirts
, “
Exploring the multi-minima behavior of small molecule crystal polymorphs at finite temperature
,”
Cryst. Growth Des.
19
(
10
),
5568
5580
(
2019
).
99.
N. F.
Francia
,
L. S.
Price
,
J.
Nyman
,
S. L.
Price
, and
M.
Salvalaglio
, “
Systematic finite-temperature reduction of crystal energy landscapes
,”
Cryst. Growth Des.
20
(
10
),
6847
6862
(
2020
).
100.
S. L.
Price
, “
Is zeroth order crystal structure prediction (CSP_0) coming to maturity? What should we aim for in an ideal crystal structure prediction code?
,”
Faraday Discuss.
211
,
9
30
(
2018
).
101.
L. R.
Pestana
,
N.
Mardirossian
,
M.
Head-Gordon
, and
T.
Head-Gordon
, “
Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals
,”
Chem. Sci.
8
(
5
),
3554
3565
(
2017
).
102.
T.
Cheng
,
H.
Xiao
, and
W. A.
Goddard
, “
Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
8
),
1795
1800
(
2017
).
103.
M.
Ceriotti
,
J.
More
, and
D. E.
Manolopoulos
, “
A Python interface for ab initio path integral molecular dynamics simulations
,”
Comput. Phys. Commun.
185
(
3
),
1019
1026
(
2014
).
104.
M.
Parrinello
and
A.
Rahman
, “
Study of an F center in molten KCl
,”
J. Chem. Phys.
80
(
2
),
860
867
(
1984
).
105.
O.
Marsalek
and
T. E.
Markland
, “
Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory
,”
J. Chem. Phys.
144
(
5
),
054112
(
2016
).
106.
V.
Kapil
,
J.
VandeVondele
, and
M.
Ceriotti
, “
Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods
,”
J. Chem. Phys.
144
(
5
),
054111
(
2016
).
107.
T. E.
Markland
and
M.
Ceriotti
, “
Nuclear quantum effects enter the mainstream
,”
Nat. Rev. Chem.
2
(
3
),
0109
(
2018
).

Supplementary Material

You do not currently have access to this content.