A molecular-level understanding of CO adsorption behavior would be greatly beneficial to resolving the problem of CO poisoning in fuel cells and medical science. Herein, an efficient borrowing strategy based on surface enhanced Raman scattering (SERS) has been developed to investigate the adsorption behavior of CO at the gas–solid interface. A composite SERS substrate with high uniformity was fabricated by electrochemical deposition of optimal Pt over-layers onto an Au nanoparticle film. The results indicated that the linearly bonded mode follows the Langmuir adsorption curve (type I), while the multiply bonded did not. It took a longer time for the C–OM vibration to reach the adsorption equilibrium than that of C–OL. The variation tendency toward the Pt–COL frequency was in opposition to that of C–OL, caused by the chemical and dipole–dipole coupling effects. The increase in dynamic coupling effects of the CO molecules caused a blue shift in νCO and a red shift of the Pt–CO band, while its shielding effect on SERS intensity cannot be ignored. Additionally, higher pressure is more conducive for linear adsorption to achieve saturation. Density functional theory calculations were employed to explore the adsorption mechanisms. It should also be noted that the substrate with good recycling performance greatly expands its practical application value. The present study suggested that the SERS-based borrowing strategy shows sufficient even valuable capacity to investigate gas adsorption kinetics behavior.

1.
G. F.
Fine
,
L. M.
Cavanagh
,
A.
Afonja
, and
R.
Binions
, “
Metal oxide semi-conductor gas sensors in environmental monitoring
,”
Sensors
10
,
5469
(
2010
).
2.
S. S.
Park
,
J.
Kim
, and
Y.
Lee
, “
Improved electrochemical microsensor for the real-time simultaneous analysis of endogenous nitric oxide and carbon monoxide generation
,”
Anal. Chem.
84
,
1792
(
2012
).
3.
T.
Otagawa
,
M.
Madou
,
S.
Wing
,
J.
Rich-Alexander
,
S.
Kusanagi
,
T.
Fujioka
, and
A.
Yasuda
, “
Planar microelectrochemical carbon monoxide sensors
,”
Sens. Actuators, B
1
,
319
(
1990
).
4.
G. S.
Marks
,
H. J.
Vreman
,
B. E.
Mclaughlin
,
J. F.
Brien
, and
K.
Nakatsu
, “
Measurement of endogenous carbon monoxide formation in biological systems
,”
Antioxid. Redox Signaling
4
,
271
(
2002
).
5.
J.
Mulrooney
,
J.
Clifford
,
C.
Fitzpatrick
,
P.
Chambers
, and
E.
Lewis
, “
A mid-infrared optical fibre sensor for the detection of carbon monoxide exhaust emissions
,”
Sens. Actuators, A
144
,
13
(
2008
).
6.
J. W.
Yan
,
J. Y.
Zhu
,
Q. F.
Tan
,
L. F.
Zhou
,
P. F.
Yao
,
Y. T.
Lu
,
J. H.
Tan
, and
L.
Zhang
, “
Development of a colorimetric and NIR fluorescent dual probe for carbon monoxide
,”
RSC Adv.
6
,
65373
(
2016
).
7.
G.
Blyholder
and
M. C.
Allen
, “
Infrared spectra and molecular orbital model for carbon monoxide adsorbed on metals
,”
J. Am. Chem. Soc.
91
,
3158
(
1969
).
8.
C. M.
Kruppe
,
J. D.
Krooswyk
, and
M.
Trenary
, “
Polarization-dependent infrared spectroscopy of adsorbed carbon monoxide to probe the surface of a Pd/Cu(111) single-atom alloy
,”
J. Phys. Chem. C
121
,
9361
(
2017
).
9.
M.
Fleischmann
,
P. J.
Hendra
, and
A. J.
Mcquillan
, “
Raman-spectra of pyridine adsorbed at a silver electrode
,”
Chem. Phys. Lett.
26
,
163
(
1974
).
10.
M. G.
Albrecht
and
J. A.
Creighton
, “
Anomalously intense Raman spectra of pyridine at a silver electrode
,”
J. Am. Chem. Soc.
99
,
5215
(
1977
).
11.
D. L.
Jeanmaire
and
R. P.
Van Duyne
, “
Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode
,”
J. Electroanal. Chem.
84
,
1
(
1977
).
12.
H.
Zhang
,
S.
Duan
,
P. M.
Radjenovic
,
Z.-Q.
Tian
, and
J.-F.
Li
, “
Core–shell nanostructure-enhanced Raman spectroscopy for surface catalysis
,”
Acc. Chem. Res.
53
,
729
(
2020
).
13.
S.
Nie
and
S. R.
Emory
, “
Probing single molecules and single nanoparticles by surface-enhanced Raman scattering
,”
Science
275
,
1102
(
1997
).
14.
T.
Vo-Dinh
and
D. L.
Stokes
, “
Surface-enhanced Raman detection of chemical vapors with the use of personal dosimeters
,”
Field Anal. Chem. Technol.
3
,
346
(
1999
).
15.
D. A.
Stuart
,
K. B.
Biggs
, and
R. P.
Van Duyne
, “
Surface-enhanced Raman spectroscopy of half-mustard agent
,”
Analyst
131
,
568
(
2006
).
16.
J.
Bowen
,
L. J.
Noe
,
B. P.
Sullivan
,
K.
Morris
, and
G.
Donnelly
, “
Gas-phase detection of trinitrotoluene utilizing a solid-phase antibody immobilized on a gold film by means of surface plasmon resonance spectroscopy
,”
Appl. Spectrosc.
57
,
906
(
2003
).
17.
M. K.
Khaing Oo
,
C.-F.
Chang
,
Y. Z.
Sun
, and
X. D.
Fan
, “
Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates
,”
Analyst
136
,
2811
(
2011
).
18.
J. M.
Sylvia
,
J. A.
Janni
,
J. D.
Klein
, and
K. M.
Spencer
, “
Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines
,”
Anal. Chem.
72
,
5834
(
2000
).
19.
J.
Wang
,
L. L.
Yang
,
S.
Boriskina
,
B.
Yan
, and
B. M.
Reinhard
, “
Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays
,”
Anal. Chem.
83
,
2243
(
2011
).
20.
K.
Kneipp
,
Y.
Wang
,
R. R.
Dasari
,
M. S.
Feld
,
B. D.
Gilbert
,
J.
Janni
, and
J. I.
Steinfeld
, “
Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver
,”
Spectrochim. Acta, Part A
51
,
2171
(
1995
).
21.
A.
Chou
,
B.
Radi
,
E.
Jaatinen
,
S.
Juodkazis
, and
P. M.
Fredericks
, “
Trace vapour detection at room temperature using Raman spectroscopy
,”
Analyst
139
,
1960
(
2014
).
22.
M. K.
Khaing Oo
,
Y. B.
Guo
,
K.
Reddy
,
J.
Liu
, and
X. D.
Fan
, “
Ultrasensitive vapor detection with surface-enhanced Raman scattering-active gold nanoparticle immobilized flow-through multihole capillaries
,”
Anal. Chem.
84
,
3376
(
2012
).
23.
N. M.
Markovic
,
C. A.
Lucas
,
A.
Rodes
,
V.
Stamenkovi
, and
P. N.
Ross
, “
Surface electrochemistry of CO on Pt(111): Anion effects
,”
Surf. Sci.
499
,
L149
(
2002
).
24.
M.
Fleischmann
,
Z. Q.
Tian
, and
L. J.
Li
, “
Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates
,”
J. Electroanal. Chem.
217
,
397
(
1987
).
25.
L. W. H.
Leung
and
M. J.
Weaver
, “
Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: Carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes
,”
J. Am. Chem. Soc.
109
,
5113
(
1987
).
26.
L. W. H.
Leung
and
M. J.
Weaver
, “
Adsorption and electrooxidation of carbon monoxide on rhodium- and ruthenium-coated gold electrodes as probed by surface-enhanced Raman spectroscopy
,”
Langmuir
4
,
1076
(
1988
).
27.
Z.-Q.
Tian
,
B.
Ren
, and
D.-Y.
Wu
, “
Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures
,”
J. Phys. Chem. B
106
,
9463
(
2002
).
28.
L. W. H.
Leung
and
M. J.
Weaver
, “
Extending the metal interface generality of surface-enhanced Raman spectroscopy: Underpotential deposited layers of mercury, thallium, and lead on gold electrodes
,”
J. Electroanal. Chem. Interfacial Electrochem.
217
,
367
(
1987
).
29.
H.
Feilchenfeld
,
X. P.
Gao
, and
M. J.
Weaver
, “
Surface-enhanced Raman spectroscopy of pyridine adsorbed on rhodium modified silver electrodes
,”
Chem. Phys. Lett.
161
,
321
(
1989
).
30.
H.
Feilchenfeld
and
M. J.
Weaver
, “
Adsorption of acetylene on rhodium- or platinum-modified silver and gold electrodes: A surface-enhanced Raman study
,”
J. Phys. Chem.
95
,
7771
(
1991
).
31.
M. J.
Weaver
,
S. Z.
Zou
, and
H. Y.
Chan
, “
The new interfacial ubiquity of surface-enhanced Raman spectroscopy
,”
Anal. Chem.
72
,
38A
(
2000
).
32.
S.
Park
,
P.
Yang
,
P.
Corredor
, and
M. J.
Weaver
, “
Transition metal-coated nanoparticle films: Vibrational characterization with surface-enhanced Raman scattering
,”
J. Am. Chem. Soc.
124
,
2428
(
2002
).
33.
Z.-Q.
Tian
,
B.
Ren
,
J.-F.
Li
, and
Z.-L.
Yang
, “
Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy
,”
Chem. Commun.
34
,
3514
(
2007
).
34.
A. A.
Tolia
,
M. J.
Weaver
, and
C. G.
Takoudis
, “
In situ surface-enhanced Raman spectroscopic study of CO oxidation by NO and O2 over rhodium-coated gold surfaces
,”
J. Vac. Sci. Technol., A
11
,
2013
(
1993
).
35.
T.
Nanba
,
I.
Yamamoto
, and
M.
Ikezawa
, “
Surface enhanced Raman scattering of CO adsorbed on silver film
,”
J. Phys. Soc. Jpn.
55
,
2716
(
1986
).
36.
B.
Ren
,
L.
Cui
,
X.-F.
Lin
, and
Z.-Q.
Tian
, “
Probing different adsorption behavior of CO on Pt at solid/liquid and solid/gas interfaces by Raman spectroscopy with a three-phase Raman cell
,”
Chem. Phys. Lett.
376
,
130
(
2003
).
37.
A.
Sumer
and
A. E.
Aksoylu
, “
Adsorption-induced surface electronic reconstruction of Pt and Pt–Sn alloys during CO adsorption
,”
J. Phys. Chem. C
113
,
14329
(
2009
).
38.
Q. H.
Guo
,
M. M.
Xu
,
Y. X.
Yuan
,
R. A.
Gu
, and
J. L.
Yao
, “
Self-assembled large-scale monolayer of Au nanoparticles at the air/water interface used as a SERS substrate
,”
Langmuir
32
,
4530
(
2016
).
39.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
,
Gaussian, Inc.
,
Wallingford CT
,
2010
.
40.
P.
Zhang
,
Y.-X.
Chen
,
J.
Cai
,
S.-Z.
Liang
,
J.-F.
Li
,
A.
Wang
,
B.
Ren
, and
Z.-Q.
Tian
, “
An electrochemical in situ surface-enhanced Raman spectroscopic study of carbon monoxide chemisorption at a gold core-platinum shell nanoparticle electrode with a flow cell
,”
J. Phys. Chem. C
113
,
17518
(
2009
).
41.
J.-F.
Li
,
Z.-L.
Yang
,
B.
Ren
,
G.-K.
Liu
,
P.-P.
Fang
,
Y.-X.
Jiang
,
D.-Y.
Wu
, and
Z.-Q.
Tian
, “
Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: Toward a versatile vibrational strategy for electrochemical interfaces
,”
Langmuir
22
,
10372
(
2006
).
42.
J.-L.
Yao
,
X.
Xu
,
D.-Y.
Wu
,
Y.
Xie
,
B.
Ren
,
Z.-Q.
Tian
,
G.-P.
Pan
,
D.-M.
Sun
, and
K.-H.
Xue
, “
Electronic properties of metal nanorods probed by surface-enhanced Raman spectroscopy
,”
Chem. Commun.
17
,
1627
(
2000
).
43.
G. M.
Feeley
,
S. L.
Hemmingson
, and
C. T.
Campbell
, “
Energetics of Au adsorption and film growth on Pt(111) by single crystal adsorption calorimetry
,”
J. Phys. Chem. C
123
,
5557
(
2019
).
44.
S. Z.
Zou
and
M. J.
Weaver
, “
Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: Chemical bonding versus electrostatic field effects
,”
J. Phys. Chem.
100
,
4237
(
1996
).
45.
P.
Zhang
,
J.
Cai
,
Y.-X.
Chen
,
Z.-Q.
Tang
,
D.
Chen
,
J. L.
Yang
,
D.-Y.
Wu
,
B.
Ren
, and
Z.-Q.
Tian
, “
Potential-dependent chemisorption of carbon monoxide at a gold core-platinum shell nanoparticle electrode: A combined study by electrochemical in situ surface-enhanced Raman spectroscopy and density functional theory
,”
J. Phys. Chem. C
114
,
403
(
2010
).
46.
J.
Wintterlin
, “
Scanning tunneling microscopy studies of catalytic reactions
,”
Adv. Catal.
45
,
131
(
2000
).
47.
T.
Panczyk
, “
Sticking coefficient and pressure dependence of desorption rate in the statistical rate theory approach to the kinetics of gas adsorption. Carbon monoxide adsorption/desorption rates on the polycrystalline rhodium surface
,”
Phys. Chem. Chem. Phys.
8
,
3782
(
2006
).
48.
M. A.
Wahab
and
C.-S.
Ha
, “
Ruthenium-functionalised hybrid periodic mesoporous organosilicas: Synthesis and structural characterization
,”
J. Mater. Chem.
15
,
508
(
2005
).
49.
T. F.
Kuznetsova
,
A. I.
Rat’ko
, and
S. I.
Eremenko
, “
Synthesis and properties of porous silica obtained by the template method
,”
Russ. J. Phys. Chem. A
86
,
1618
(
2012
).
50.
B. N. J.
Persson
and
R.
Ryberg
, “
Vibrational line shapes of low-frequency adsorbate modes: CO on Pt(111)
,”
Phys. Rev. B
40
,
10273
(
1989
).
51.
V. M.
Browne
,
S. G.
Fox
, and
P.
Hollins
, “
Infrared spectroscopy as an in situ probe of morphology
,”
Catal. Today
9
,
1
(
1991
).
52.
J.
Liu
,
M.
Xu
,
T.
Nordmeyer
, and
F.
Zaera
, “
Sticking probabilities for CO adsorption on Pt(111) surfaces revisited
,”
J. Phys. Chem.
99
,
6167
(
1995
).
53.
G.
Ertl
,
M.
Neumann
, and
K. M.
Streit
, “
Chemisorption of CO on the Pt(111) surface
,”
Surf. Sci.
64
,
393
(
1977
).
54.
J. P.
Merrick
,
D.
Moran
, and
L.
Radom
, “
An evaluation of harmonic vibrational frequency scale factors
,”
J. Phys. Chem. A
111
,
11683
(
2007
).
55.
A.
Cuesta
,
A.
Couto
,
A.
Rincón
,
M. C.
Pérez
,
A.
López-Cudero
, and
C.
Gutiérrez
, “
Potential dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 3: Pt(poly)
,”
J. Electroanal. Chem.
579
,
184
(
2006
).

Supplementary Material

You do not currently have access to this content.