We develop a formalism to accurately account for the renormalization of the electronic structure due to quantum and thermal nuclear motions within the Born–Oppenheimer approximation. We focus on the fundamental energy gap obtained from electronic addition and removal energies from quantum Monte Carlo calculations in either the canonical or grand-canonical ensembles. The formalism applies as well to effective single electron theories such as those based on density functional theory. We show that the electronic (Bloch) crystal momentum can be restored by marginalizing the total electron–ion wave function with respect to the nuclear equilibrium distribution, and we describe an explicit procedure to establish the band structure of electronic excitations for quantum crystals within the Born–Oppenheimer approximation. Based on the Kubo–Greenwood equation, we discuss the effects of nuclear motion on optical conductivity. Our methodology applies to the low temperature regime where nuclear motion is quantized and, in general, differs from the semi-classical approximation. We apply our method to study the electronic structure of C2/c-24 crystalline hydrogen at 200 K and 250 GPa and discuss the optical absorption profile of hydrogen crystals at 200 K and carbon diamond at 297 K.

1.
S.
Huotari
,
J. A.
Soininen
,
T.
Pylkkänen
,
K.
Hämäläinen
,
A.
Issolah
,
A.
Titov
,
J.
McMinis
,
J.
Kim
,
K.
Esler
,
D. M.
Ceperley
,
M.
Holzmann
, and
V.
Olevano
, “
Momentum distribution and renormalization factor in sodium and the electron gas
,”
Phys. Rev. Lett.
105
,
086403
(
2010
).
2.
J.
Kolorenč
and
L.
Mitas
, “
Applications of quantum Monte Carlo methods in condensed systems
,”
Rep. Prog. Phys.
74
,
026502
(
2011
).
3.
L.
Shulenburger
and
T. R.
Mattsson
, “
Quantum Monte Carlo applied to solids
,”
Phys. Rev. B
88
,
245117
(
2013
).
4.
L. K.
Wagner
and
P.
Abbamonte
, “
Effect of electron correlation on the electronic structure and spin-lattice coupling of high-Tc cuprates: Quantum Monte Carlo calculations
,”
Phys. Rev. B
90
,
125129
(
2014
).
5.
L. K.
Wagner
and
D. M.
Ceperley
, “
Discovering correlated fermions using quantum Monte Carlo
,”
Rep. Prog. Phys.
79
,
094501
(
2016
).
6.
R. J.
Hunt
,
M.
Szyniszewski
,
G. I.
Prayogo
,
R.
Maezono
, and
N. D.
Drummond
, “
Quantum Monte Carlo calculations of energy gaps from first principles
,”
Phys. Rev. B
98
,
075122
(
2018
).
7.
Y.
Yang
,
V.
Gorelov
,
C.
Pierleoni
,
D. M.
Ceperley
, and
M.
Holzmann
, “
Electronic band gaps from Quantum Monte Carlo methods
,”
Phys. Rev. B
101
,
85115
(
2020
); arXiv:1910.07531.
8.
N.
Hiraoka
,
Y.
Yang
,
T.
Hagiya
,
A.
Niozu
,
K.
Matsuda
,
S.
Huotari
,
M.
Holzmann
, and
D. M.
Ceperley
, “
Direct observation of the momentum distribution and renormalization factor in lithium
,”
Phys. Rev. B
101
,
165124
(
2020
).
9.
Y.
Yang
,
N.
Hiraoka
,
K.
Matsuda
,
M.
Holzmann
, and
D. M.
Ceperley
, “
Quantum Monte Carlo Compton profiles of solid and liquid lithium
,”
Phys. Rev. B
101
,
165125
(
2020
).
10.
S.
Zhang
, “
Ab initio electronic structure calculations by auxiliary-field quantum Monte Carlo
,” in
Handbook of Materials Modeling: Methods: Theory and Modeling
, edited by
W.
Andreoni
and
S.
Yip
(
Springer International Publishing
,
Cham
,
2018
), pp.
1
27
.
11.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
,
P.
López Ríos
, and
J. R.
Trail
, “
Variational and diffusion quantum Monte Carlo calculations with the CASINO code
,”
J. Chem. Phys.
152
,
154106
(
2020
); arXiv:2003.06506.
12.
K.
Nakano
,
C.
Attaccalite
,
M.
Barborini
,
L.
Capriotti
,
M.
Casula
,
E.
Coccia
,
M.
Dagrada
,
C.
Genovese
,
Y.
Luo
,
G.
Mazzola
,
A.
Zen
, and
S.
Sorella
, “
TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo
,”
J. Chem. Phys.
152
,
204121
(
2020
); arXiv:2002.07401.
13.
P.
Ganesh
,
F.
Lechermann
,
I.
Kylänpää
,
J. T.
Krogel
,
P. R.
Kent
, and
O.
Heinonen
, “
Doping a bad metal: Origin of suppression of the metal-insulator transition in nonstoichiometric VO2
,”
Phys. Rev. B
101
,
155129
(
2020
); arXiv:1811.01145.
14.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of solid hydrogen at high pressures
,”
Phys. Rev. B
36
,
2092
2106
(
1987
).
15.
V.
Natoli
,
R. M.
Martin
, and
D. M.
Ceperley
, “
Crystal structure of atomic hydrogen
,”
Phys. Rev. Lett.
70
,
1952
1955
(
1993
).
16.
M.
Holzmann
,
C.
Pierleoni
, and
D. M.
Ceperley
, “
Coupled electron–ion Monte Carlo calculations of atomic hydrogen
,”
Comput. Phys. Commun.
169
,
421
425
(
2005
).
17.
C.
Pierleoni
,
D. M.
Ceperley
,
B.
Bernu
, and
W. R.
Magro
, “
Equation of state of the hydrogen plasma by path integral Monte Carlo simulation
,”
Phys. Rev. Lett.
73
,
2145
2149
(
1994
).
18.
W. R.
Magro
,
D. M.
Ceperley
,
C.
Pierleoni
, and
B.
Bernu
, “
Molecular dissociation in hot, dense hydrogen
,”
Phys. Rev. Lett.
76
,
1240
1243
(
1996
).
19.
B.
Militzer
and
D. M.
Ceperley
, “
Path integral Monte Carlo calculation of the deuterium hugoniot
,”
Phys. Rev. Lett.
85
,
1890
1893
(
2000
).
20.
C.
Pierleoni
,
D. M.
Ceperley
, and
M.
Holzmann
, “
Coupled electron-ion Monte Carlo calculations of dense metallic hydrogen
,”
Phys. Rev. Lett.
93
,
146402
(
2004
).
21.
J. C.
Grossman
and
L.
Mitas
, “
Efficient quantum Monte Carlo energies for molecular dynamics simulations
,”
Phys. Rev. Lett.
94
,
056403
(
2005
).
22.
C.
Attaccalite
and
S.
Sorella
, “
Stable liquid hydrogen at high pressure by a novel ab initio molecular-dynamics calculation
,”
Phys. Rev. Lett.
100
,
114501
(
2008
).
23.
V.
Gorelov
,
M.
Holzmann
,
D. M.
Ceperley
, and
C.
Pierleoni
, “
Energy gap closure of crystalline molecular hydrogen with pressure
,”
Phys. Rev. Lett.
124
,
116401
(
2020
); arXiv:1911.06135.
24.
V.
Gorelov
,
D. M.
Ceperley
,
M.
Holzmann
, and
C.
Pierleoni
, “
Electronic energy gap closure and metal-insulator transition in dense liquid hydrogen
,”
Phys. Rev. B
102
,
195133
(
2020
).
25.
F.
Giustino
,
S. G.
Louie
, and
M. L.
Cohen
, “
Electron-phonon renormalization of the direct band gap of diamond
,”
Phys. Rev. Lett.
105
,
265501
(
2010
).
26.
A.
Marini
, “
Ab initio finite-temperature excitons
,”
Phys. Rev. Lett.
101
,
106405
(
2008
).
27.
E.
Cannuccia
and
A.
Marini
, “
Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene
,”
Phys. Rev. Lett.
107
,
255501
(
2011
).
28.
E.
Cannuccia
and
A.
Marini
, “
Zero point motion effect on the electronic properties of diamond, trans-polyacetylene and polyethylene
,”
Eur. Phys. J. B
85
,
320
(
2012
).
29.
G.
Antonius
,
S.
Poncé
,
P.
Boulanger
,
M.
Côté
, and
X.
Gonze
, “
Many-body effects on the zero-point renormalization of the band structure
,”
Phys. Rev. Lett.
112
,
215501
(
2014
).
30.
S.
Poncé
,
G.
Antonius
,
Y.
Gillet
,
P.
Boulanger
,
J.
Laflamme Janssen
,
A.
Marini
,
M.
Côté
, and
X.
Gonze
, “
Temperature dependence of electronic eigenenergies in the adiabatic harmonic approximation
,”
Phys. Rev. B
90
,
214304
(
2014
).
31.
H.
Kawai
,
K.
Yamashita
,
E.
Cannuccia
, and
A.
Marini
, “
Electron-electron and electron-phonon correlation effects on the finite-temperature electronic and optical properties of zinc-blende gan
,”
Phys. Rev. B
89
,
085202
(
2014
).
32.
S.
Poncé
,
Y.
Gillet
,
J.
Laflamme Janssen
,
A.
Marini
,
M.
Verstraete
, and
X.
Gonze
, “
Temperature dependence of the electronic structure of semiconductors and insulators
,”
J. Chem. Phys.
143
,
102813
(
2015
).
33.
A.
Molina-Sánchez
,
M.
Palummo
,
A.
Marini
, and
L.
Wirtz
, “
Temperature-dependent excitonic effects in the optical properties of single-layer MoS2
,”
Phys. Rev. B
93
,
155435
(
2016
).
34.
J.
Menéndez
,
M.
Noël
,
J. C.
Zwinkels
, and
D. J.
Lockwood
, “
Resonant indirect optical absorption in germanium
,”
Phys. Rev. B
96
,
121201
(
2017
).
35.
J. D.
Querales-Flores
,
J.
Cao
,
S.
Fahy
, and
I.
Savić
, “
Temperature effects on the electronic band structure of PbTe from first principles
,”
Phys. Rev. Mater.
3
,
055405
(
2019
).
36.
J.-M.
Lihm
and
C.-H.
Park
, “
Phonon-induced renormalization of electron wave functions
,”
Phys. Rev. B
101
,
121102
(
2020
).
37.
M.
Zacharias
and
F.
Giustino
, “
Theory of the special displacement method for electronic structure calculations at finite temperature
,”
Phys. Rev. Res.
2
,
013357
(
2020
).
38.
P. B.
Allen
and
V.
Heine
, “
Theory of the temperature dependence of electronic band structures
,”
J. Phys. C: Solid State Phys.
9
,
2305
2312
(
1976
).
39.
P. B.
Allen
and
M.
Cardona
, “
Theory of the temperature dependence of the direct gap of germanium
,”
Phys. Rev. B
23
,
1495
1505
(
1981
).
40.
P. B.
Allen
and
M.
Cardona
, “
Temperature dependence of the direct gap of Si and Ge
,”
Phys. Rev. B
27
,
4760
4769
(
1983
).
41.
F.
Giustino
, “
Electron-phonon interactions from first principles
,”
Rev. Mod. Phys.
89
,
1
63
(
2017
); arXiv:1603.06965.
42.
M. A.
Morales
,
J. M.
McMahon
,
C.
Pierleoni
, and
D. M.
Ceperley
, “
Towards a predictive first-principles description of solid molecular hydrogen with density functional theory
,”
Phys. Rev. B
87
,
184107
(
2013
).
43.
N. D.
Drummond
,
B.
Monserrat
,
J. H.
Lloyd-Williams
,
P. L.
Ríos
,
C. J.
Pickard
, and
R. J.
Needs
, “
Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures
,”
Nat. Commun.
6
,
7794
(
2015
).
44.
B.
Monserrat
,
E. A.
Engel
, and
R. J.
Needs
, “
Giant electron-phonon interactions in molecular crystals and the importance of nonquadratic coupling
,”
Phys. Rev. B
92
,
140302
(
2015
).
45.
I.
Errea
,
M.
Calandra
, and
F.
Mauri
, “
Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides
,”
Phys. Rev. B
89
,
064302
(
2014
).
46.
L.
Monacelli
,
I.
Errea
,
M.
Calandra
, and
F.
Mauri
, “
Black metal hydrogen above 360 GPa driven by proton quantum fluctuations
,”
Nat. Phys.
(published online); arXiv:1912.05514.
47.
F.
Della Sala
,
R.
Rousseau
,
A.
Görling
, and
D.
Marx
, “
Quantum and thermal fluctuation effects on the photoabsorption spectra of clusters
,”
Phys. Rev. Lett.
92
,
183401
(
2004
).
48.
R.
Ramírez
,
C. P.
Herrero
, and
E. R.
Hernández
, “
Path-integral molecular dynamics simulation of diamond
,”
Phys. Rev. B
73
,
245202
(
2006
).
49.
A.
Franceschetti
, “
First-principles calculations of the temperature dependence of the band gap of Si nanocrystals
,”
Phys. Rev. B
76
,
161301
(
2007
).
50.
R.
Ramírez
,
C. P.
Herrero
,
E. R.
Hernández
, and
M.
Cardona
, “
Path-integral molecular dynamics simulation of 3C-SiC
,”
Phys. Rev. B
77
,
045210
(
2008
).
51.
G.
Rillo
,
M. A.
Morales
,
D. M.
Ceperley
, and
C.
Pierleoni
, “
Optical properties of high-pressure fluid hydrogen across molecular dissociation
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
9770
9774
(
2019
); arXiv:1810.08131.
52.
M. A.
Morales
,
C.
Pierleoni
,
E.
Schwegler
, and
D. M.
Ceperley
, “
Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
12799
12803
(
2010
).
53.
C.
Pierleoni
,
M. A.
Morales
,
G.
Rillo
,
M.
Holzmann
, and
D. M.
Ceperley
, “
Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
4954
4957
(
2016
).
54.
M.
Zacharias
,
M.
Scheffler
, and
C.
Carbogno
, “
Fully anharmonic nonperturbative theory of vibronically renormalized electronic band structures
,”
Phys. Rev. B
102
,
45126
(
2020
).
55.
F. E.
Williams
, “
An absolute theory of solid-state luminescence
,”
J. Chem. Phys.
19
,
457
466
(
1951
).
56.
M.
Lax
, “
The Franck-Condon principle and its application to crystals
,”
J. Chem. Phys.
20
,
1752
1760
(
1952
).
57.
C. E.
Patrick
and
F.
Giustino
, “
Unified theory of electron-phonon renormalization and phonon-assisted optical absorption
,”
J. Phys. Condens. Matter
26
,
365503
(
2014
).
58.
M.
Zacharias
and
F.
Giustino
, “
One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization
,”
Phys. Rev. B
94
,
075125
(
2016
).
59.
C.
Lin
,
F. H.
Zong
, and
D. M.
Ceperley
, “
Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms
,”
Phys. Rev. E
64
,
016702
(
2001
); arXiv:0101339 [cond-mat].
60.
S.
Chiesa
,
D. M.
Ceperley
,
R. M.
Martin
, and
M.
Holzmann
, “
Finite-size error in many-body simulations with long-range interactions
,”
Phys. Rev. Lett.
97
,
6
9
(
2006
).
61.
N. D.
Drummond
,
R. J.
Needs
,
A.
Sorouri
, and
W. M. C.
Foulkes
, “
Finite-size errors in continuum quantum Monte Carlo calculations
,”
Phys. Rev. B
78
,
125106
(
2008
).
62.
M.
Holzmann
,
R. C.
Clay
,
M. A.
Morales
,
N. M.
Tubman
,
D. M.
Ceperley
, and
C.
Pierleoni
, “
Theory of finite size effects for electronic quantum Monte Carlo calculations of liquids and solids
,”
Phys. Rev. B
94
,
035126
(
2016
); arXiv:1603.03957.
63.
S.
Azadi
and
W. M. C.
Foulkes
, “
Efficient method for grand-canonical twist averaging in quantum Monte Carlo calculations
,”
Phys. Rev. B
100
,
245142
(
2019
).
64.
G.
Rajagopal
,
R. J.
Needs
,
A.
James
,
S. D.
Kenny
, and
W. M. C.
Foulkes
, “
Variational and diffusion quantum Monte Carlo calculations at nonzero wave vectors: Theory and application to diamond-structure germanium
,”
Phys. Rev. B
51
,
10591
10600
(
1995
).
65.
M. D.
Towler
,
R. Q.
Hood
, and
R. J.
Needs
, “
Minimum principles and level splitting in quantum Monte Carlo excitation energies: Application to diamond
,”
Phys. Rev. B
62
,
2330
2337
(
2000
).
66.
C. J.
Pickard
and
R. J.
Needs
, “
Structure of phase III of solid hydrogen
,”
Nat. Phys.
3
,
473
476
(
2007
).
67.
G.
Rillo
,
M. A.
Morales
,
D. M.
Ceperley
, and
C.
Pierleoni
, “
Coupled electron-ion Monte Carlo simulation of hydrogen molecular crystals
,”
J. Chem. Phys.
148
,
102314
(
2018
).
68.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
570
586
(
1957
).
69.
D. A.
Greenwood
, “
The Boltzmann equation in the theory of electrical conduction in metals
,”
Proc. Phys. Soc.
71
,
585
596
(
1958
).
70.
S.
Stoupin
and
Y. V.
Shvyd’Ko
, “
Thermal expansion of diamond at low temperatures
,”
Phys. Rev. Lett.
104
,
2
5
(
2010
).
71.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
,
B. A.
Helfrecht
,
P.
Juda
,
S. P.
Bienvenue
,
W.
Fang
,
J.
Kessler
,
I.
Poltavsky
,
S.
Vandenbrande
,
J.
Wieme
,
C.
Corminboeuf
,
T. D.
Kühne
,
D. E.
Manolopoulos
,
T. E.
Markland
,
J. O.
Richardson
,
A.
Tkatchenko
,
G. A.
Tribello
,
V.
Van Speybroeck
, and
M.
Ceriotti
, “
i-PI 2.0: A universal force engine for advanced molecular simulations
,”
Comput. Phys. Commun.
236
,
214
223
(
2019
); arXiv:1808.03824.
72.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A.
Dal Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A.
Otero-de-la-Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
73.
L.
Calderín
,
V. V.
Karasiev
, and
S. B.
Trickey
, “
Kubo-Greenwood electrical conductivity formulation and implementation for projector augmented wave datasets
,”
Comput. Phys. Commun.
221
,
118
142
(
2017
); arXiv:1707.08437.
74.
J.
Tauc
,
R.
Grigorovici
, and
A.
Vancu
, “
Optical properties and electronic structure of amorphous germanium
,”
Phys. Status Solidi B
15
,
627
637
(
1966
).
You do not currently have access to this content.