The multi-configuration time-dependent Hartree method is a general algorithm to solve the time-dependent Schrödinger equation, in which the wavefunction is expanded in a direct product of self-adapting time-dependent Single-Particle Functions (SPFs) that are propagated in time according to the Dirac–Frenkel variational principle. In the current version of this approach, the size of the SPF basis is fixed at the outset so that singularities in the working equations resulting from unoccupied functions have to be removed by a regularization procedure. Here, an alternative protocol is presented, in which we gradually increase the number of unoccupied SPFs on-the-fly (i.e., spawning) and optimize their shape by variationally minimizing the error made by the finite size of the basis. An initial estimate for the respective new expansion coefficients is also computed, thus avoiding the need to regularize the equations of motion. The advantages of employing the new algorithm are tested and discussed in some illustrative examples.

1.
R. P.
Feynman
, “
Simulating physics with computers
,”
Int. J. Theor. Phys.
21
,
467
(
1982
).
2.
L. R.
Tucker
, “
Some mathematical notes on three-mode factor-analysis
,”
Psychometrika
31
,
279
(
1966
).
3.
F. L.
Hitchcock
, “
The expression of a tensor or a polyadic as a sum of products
,”
J. Math. Phys.
6
,
164
189
(
1927
).
4.
M.
Fannes
,
B.
Nachtergaele
, and
R. F.
Werner
, “
Finitely correlated states on quantum spin chains
,”
Commun. Math. Phys.
144
,
443
490
(
1992
).
5.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
(
1992
).
6.
U.
Schollwöck
, “
The density-matrix renormalization group in the age of matrix product states
,”
Ann. Phys.
326
,
96
(
2011
).
7.
J.
Olsen
, “
The CASSCF method: A perspective and commentary
,”
Int. J. Quantum Chem.
111
,
3267
3272
(
2011
).
8.
J.
Townsend
,
J. K.
Kirkland
, and
K. D.
Vogiatzis
,
Post–Hartree–Fock Methods: Configuration Interaction, Many-Body Perturbation Theory, Coupled-Cluster Theory
, Developments in Physical and Theoretical Chemistry (
Elsevier
,
2019
), Chap. 3.
9.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
10.
U.
Manthe
,
H. D.
Meyer
, and
L. S.
Cederbaum
, “
Wave-packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl
,”
J. Chem. Phys.
97
,
3199
3213
(
1992
).
11.
M.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
, “
The multi-configuration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wave packets
,”
Phys. Rep.
324
,
1
105
(
2000
).
12.
H.-D.
Meyer
and
G. A.
Worth
, “
Quantum molecular dynamics: Propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree (MCTDH) method
,”
Theor. Chem. Acc.
109
,
251
267
(
2003
).
13.
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
, edited by
H.-D.
Meyer
,
F.
Gatti
, and
G. A.
Worth
(
Wiley VCH
,
Weinheim
,
2009
).
14.
H.-D.
Meyer
, “
Studying molecular quantum dynamics with the multiconfiguration time-dependent Hartree method
,”
Wiley Interdiscip. Rev. Comput. Mol. Sci
2
,
351
374
(
2012
).
15.
F.
Gatti
,
B.
Lasorne
,
H.-D.
Meyer
, and
A.
Nauts
,
Applications of Quantum Dynamics in Chemistry
, Lectures Notes in Chemistry (
Springer
,
Heidelberg
,
2017
), Vol. 98.
16.
H.-D.
Meyer
and
H.
Wang
, “
On regularizing the MCTDH equations of motion
,”
J. Chem. Phys.
148
,
124105
(
2018
).
17.
H.
Wang
and
H.-D.
Meyer
, “
On regularizing the ML-MCTDH equations of motion
,”
J. Chem. Phys.
149
,
044119
(
2018
).
18.
U.
Manthe
, “
The multi-configurational time-dependent Hartree approach revisited
,”
J. Chem. Phys.
142
,
244109
(
2015
).
19.
D.
Mendive-Tapia
,
T.
Firmino
,
H.-D.
Meyer
, and
F.
Gatti
, “
Towards a systematic convergence of multi-layer (ML) multi-configuration time-dependent Hartree nuclear wavefunctions: The ML-spawning algorithm
,”
Chem. Phys.
482
,
113
123
(
2017
).
20.

When deriving Eqs. (4) and (5), the constraint φj(κ)|φ̇l(κ)=0 was used. Other constraints, also called gauge conditions, are discussed in Refs. 11–14.

21.
K.-S.
Lee
and
U. R.
Fischer
, “
Truncated many-body dynamics of interacting bosons: A variational principle with error monitoring
,”
Int. J. Mod. Phys. B
28
,
1550021
(
2014
).
22.
U.
Manthe
, “
On the integration of the multi-configurational time-dependent Hartree (MCTDH) equations of motion
,”
Chem. Phys.
329
,
168
178
(
2006
).
23.
M. H.
Beck
and
H.-D.
Meyer
, “
An efficient and robust integration scheme for the equations of motion of the multiconfiguration time-dependent Hartree (MCTDH) method
,”
Z. Phys. D
42
,
113
129
(
1997
).
24.
A.
Jäckle
and
H. D.
Meyer
, “
Product representation of potential energy surfaces
,”
J. Chem. Phys.
104
,
7974
(
1996
).
25.
D.
Peláez
and
H.-D.
Meyer
, “
The multigrid POTFIT (MGPF) method: Grid representations of potentials for quantum dynamics of large systems
,”
J. Chem. Phys.
138
,
014108
(
2013
).
26.
M.
Schröder
and
H.-D.
Meyer
, “
Transforming high-dimensional potential energy surfaces into sum-of-products form using Monte Carlo methods
,”
J. Chem. Phys.
147
,
064105
(
2017
).
27.
M.
Schröder
, “
Transforming high-dimensional potential energy surfaces into a canonical polyadic decomposition using Monte Carlo methods
,”
J. Chem. Phys.
152
,
024108
(
2020
).
28.

The symbol F should carry an upper index (κ), which is dropped here for notational simplicity. The DOF under consideration is indicated by the index Jκ.

29.

As expected, for this particular initial wavefunction, the choice of ξ0 as unoccupied SPF is redundant, denoted by its eigenvalue with D being zero. The operator [1 − P(κ)] in both Eqs. (41) and (70) ensures that the time-derivative of the optimal unoccupied SPFs is orthogonal to the space spanned by the occupied functions.

30.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H.-D.
Meyer
, The MCTDH Package, Version 8.2 (2000); H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007). Current version: 8.4.20 (2020). See http://mctdh.uni-hd.de/.
31.
F.
Richter
,
M.
Hochlaf
,
P.
Rosmus
,
F.
Gatti
, and
H.-D.
Meyer
, “
A study of mode-selective trans–cis isomerisation in HONO using ab initio methodology
,”
J. Chem. Phys.
120
,
1306
1317
(
2004
).
32.
F.
Richter
,
P.
Rosmus
,
F.
Gatti
, and
H.-D.
Meyer
, “
Time-dependent wavepacket study on trans–cis isomerisation of HONO
,”
J. Chem. Phys.
120
,
6072
6084
(
2004
).
33.
M.
Sala
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
, “
Effect of the overall rotation on the cis–trans isomerisation of HONO induced by an external field
,”
Phys. Chem. Chem. Phys.
14
,
3791
3801
(
2012
).
34.
F.
Richter
,
F.
Gatti
,
C.
Léonard
,
F.
Le Quéré
, and
H.-D.
Meyer
, “
Time-dependent wave packet study on trans–cis isomerisation of HONO driven by an external field
,”
J. Chem. Phys.
127
,
164315
(
2007
).
35.

An error of 0.00 5515 corresponds to an overlap of 0.999 984 8.

36.
D.
Peláez
and
H.-D.
Meyer
, “
On the infrared absorption spectrum of the hydrated hydroxide (H3O2) cluster anion
,”
Chem. Phys.
482
,
100
105
(
2017
).
37.
D.
Peláez
,
K.
Sadri
, and
H.-D.
Meyer
, “
Full-dimensional MCTDH/MGPF study of the ground and lowest lying vibrational states of the bihydroxide H3O2 complex
,”
Spectrochim. Acta, Part A
119
,
42
51
(
2014
).
38.
H.-D.
Meyer
,
F.
Le Quéré
,
C.
Léonard
, and
F.
Gatti
, “
Calculation and selective population of vibrational levels with the MultiConfiguration Time-Dependent Hartree (MCTDH) algorithm
,”
Chem. Phys.
329
,
179
192
(
2006
).

Supplementary Material

You do not currently have access to this content.