The modeling of coupled electron–ion dynamics including a quantum description of the nuclear degrees of freedom has remained a costly and technically difficult practice. The kinetic model for electron–phonon interaction provides an efficient approach to this problem, for systems evolving with low amplitude fluctuations, in a quasi-stationary state. In this work, we propose an extension of the kinetic model to include the effect of coherences, which are absent in the original approach. The new scheme, referred to as Liouville–von Neumann + Kinetic Equation (or LvN + KE), is implemented here in the context of a tight-binding Hamiltonian and employed to model the broadening, caused by the nuclear vibrations, of the electronic absorption bands of an atomic wire. The results, which show close agreement with the predictions given by Fermi’s golden rule (FGR), serve as a validation of the methodology. Thereafter, the method is applied to the electron–phonon interaction in transport simulations, adopting to this end the driven Liouville–von Neumann equation to model open quantum boundaries. In this case, the LvN + KE model qualitatively captures the Joule heating effect and Ohm’s law. It, however, exhibits numerical discrepancies with respect to the results based on FGR, attributable to the fact that the quasi-stationary state is defined taking into consideration the eigenstates of the closed system rather than those of the open boundary system. The simplicity and numerical efficiency of this approach and its ability to capture the essential physics of the electron–phonon coupling make it an attractive route to first-principles electron–ion dynamics.

1.
F.
Giustino
,
Rev. Mod. Phys.
89
,
015003
(
2017
).
2.
M.
Galperin
,
M. A.
Ratner
, and
A.
Nitzan
,
J. Phys.: Condens. Matter
19
,
103201
(
2007
).
3.
N. J.
Tao
,
Nanoscience and Technology: A Collection of Reviews from Nature Journals
(
World Scientific
,
2010
), pp.
185
193
.
4.
T. N.
Todorov
,
J.
Hoekstra
, and
A. P.
Sutton
,
Phys. Rev. Lett.
86
,
3606
(
2001
).
5.
Z.
Chen
and
R. S.
Sorbello
,
Phys. Rev. B
47
,
13527
(
1993
).
6.
T.
Frederiksen
,
M.
Brandbyge
,
N.
Lorente
, and
A.-P.
Jauho
,
Phys. Rev. Lett.
93
,
256601
(
2004
).
7.
A. P.
Horsfield
,
D. R.
Bowler
,
A. J.
Fisher
,
T. N.
Todorov
, and
M. J.
Montgomery
,
J. Phys.: Condens. Matter
16
,
3609
(
2004
).
8.
L. A.
Zotti
,
M.
Bürkle
,
F.
Pauly
,
W.
Lee
,
K.
Kim
,
W.
Jeong
,
Y.
Asai
,
P.
Reddy
, and
J. C.
Cuevas
,
New J. Phys.
16
,
015004
(
2014
).
9.
T. N.
Todorov
,
D.
Dundas
,
J.-T.
,
M.
Brandbyge
, and
P.
Hedegård
,
Eur. J. Phys.
35
,
065004
(
2014
).
10.
T.
Gunst
,
T.
Markussen
,
K.
Stokbro
, and
M.
Brandbyge
,
Phys. Rev. B
93
,
035414
(
2016
).
11.
V.
Rizzi
,
T. N.
Todorov
,
J. J.
Kohanoff
, and
A. A.
Correa
,
Phys. Rev. B
93
,
024306
(
2016
).
12.
W.
Dou
and
J. E.
Subotnik
,
J. Chem. Phys.
148
,
230901
(
2018
).
13.
L.
Kantorovich
,
Phys. Rev. B
98
,
014307
(
2018
).
14.
J.-T.
,
S.
Leitherer
,
N. R.
Papior
, and
M.
Brandbyge
,
Phys. Rev. B
101
,
201406
(
2020
).
15.
T.
Wang
,
L.-L.
Nian
, and
J.-T.
,
Phys. Rev. E
102
,
022127
(
2020
).
16.
G.
Mahan
,
Many-Particle Physics
, 3rd ed. (
Kluwer Academic
,
2000
).
17.
X.
Gonze
,
D. C.
Allan
, and
M. P.
Teter
,
Phys. Rev. Lett.
68
,
3603
(
1992
).
18.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
19.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics
(
Cambridge University Press
,
Cambridge, UK
,
2009
).
20.
M. D.
Hack
and
D. G.
Truhlar
,
J. Phys. Chem. A
104
,
7917
(
2000
).
21.
J. C.
Tully
,
J. Chem. Phys.
137
,
22A301
(
2012
).
22.
M.
Persico
and
G.
Granucci
,
Theor. Chem. Acc.
133
,
1526
(
2014
).
23.
F.
Ramírez
,
G. D.
Mirón
,
M. C. G.
Lebrero
, and
D. A.
Scherlis
,
Theor. Chem. Acc.
137
,
124
(
2018
).
24.
J. E.
Subotnik
,
A.
Jain
,
B.
Landry
,
A.
Petit
,
W.
Ouyang
, and
N.
Bellonzi
,
Annu. Rev. Phys. Chem.
67
,
387
(
2016
).
25.
A. P.
Horsfield
,
D. R.
Bowler
,
A. J.
Fisher
,
T. N.
Todorov
, and
C. G.
Sánchez
,
J. Phys.: Condens. Matter
16
,
8251
(
2004
).
26.
A. P.
Horsfield
,
D. R.
Bowler
,
A. J.
Fisher
,
T. N.
Todorov
, and
C. G.
Sánchez
,
J. Phys.: Condens. Matter
17
,
4793
(
2005
).
27.
V.
Rizzi
,
T. N.
Todorov
, and
J. J.
Kohanoff
,
Sci. Rep.
7
,
45410
(
2017
).
28.
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
103
,
10137
(
1995
).
29.
N.
Bode
,
S. V.
Kusminskiy
,
R.
Egger
, and
F.
von Oppen
,
Phys. Rev. Lett.
107
,
036804
(
2011
).
30.
W.
Dou
,
A.
Nitzan
, and
J. E.
Subotnik
,
J. Chem. Phys.
143
,
054103
(
2015
).
31.
W.
Dou
and
J. E.
Subotnik
,
J. Chem. Phys.
145
,
054102
(
2016
).
32.
M.
Askerka
,
R. J.
Maurer
,
V. S.
Batista
, and
J. C.
Tully
,
Phys. Rev. Lett.
116
,
217601
(
2016
).
33.
W.
Dou
,
G.
Miao
, and
J. E.
Subotnik
,
Phys. Rev. Lett.
119
,
046001
(
2017
).
34.
F.
Chen
,
K.
Miwa
, and
M.
Galperin
,
J. Phys. Chem. A
123
,
693
(
2019
).
35.
W.
Schäfer
and
M.
Wegener
,
Semiconductor Optics and Transport Phenomena
(
Springer
,
2002
).
36.
H.
Haug
and
S. W.
Koch
,
Quantum Theory of the Optical and Electronic Properties of Semiconductors
, 4th ed. (
World Scientific
,
2004
).
37.
H.
Haug
and
A.-P.
Jauho
,
Quantum Kinetics in Transport and Optics of Semiconductors
, 2nd ed. (
Springer
,
2008
).
38.
E. J.
McEniry
,
T.
Frederiksen
,
T. N.
Todorov
,
D.
Dundas
, and
A. P.
Horsfield
,
Phys. Rev. B
78
,
035446
(
2008
).
39.
T. N.
Todorov
and
A. P.
Horsfield
,
Phys. Rev. B
99
,
045415
(
2019
).
40.
K.
Burke
,
R.
Car
, and
R.
Gebauer
,
Phys. Rev. Lett.
94
,
146803
(
2005
).
41.
A. O.
Govorov
and
H.
Zhang
,
J. Phys. Chem. C
119
,
6181
(
2015
).
42.
M. J.
Montgomery
and
T. N.
Todorov
,
J. Phys.: Condens. Matter
15
,
8781
(
2003
).
43.
M. J.
Montgomery
and
T.
Todorov
,
J. Phys.: Condens. Matter
16
,
6819
(
2004
).
44.
K.
Yabana
and
G. F.
Bertsch
,
Phys. Rev. B
54
,
4484
(
1996
).
45.
H.
Chen
,
J. M.
McMahon
,
M. A.
Ratner
, and
G. C.
Schatz
,
J. Phys. Chem. C
114
,
14384
(
2010
).
46.
U. N.
Morzan
,
F. F.
Ramírez
,
M. B.
Oviedo
,
C. G.
Sánchez
,
D. A.
Scherlis
, and
M. C. G.
Lebrero
,
J. Chem. Phys.
140
,
164105
(
2014
).
47.
A. P.
Horsfield
,
D. R.
Bowler
, and
A. J.
Fisher
,
J. Phys.: Condens. Matter
16
,
L65
(
2004
).
48.
C. G.
Sánchez
,
M.
Stamenova
,
S.
Sanvito
,
D. R.
Bowler
,
A. P.
Horsfield
, and
T. N.
Todorov
,
J. Chem. Phys.
124
,
214708
(
2006
).
49.
T.
Zelovich
,
L.
Kronik
, and
O.
Hod
,
J. Chem. Theory Comput.
10
,
2927
(
2014
).
50.
U. N.
Morzan
,
F. F.
Ramírez
,
M. C.
González Lebrero
, and
D. A.
Scherlis
,
J. Chem. Phys.
146
,
044110
(
2017
).
51.
T.
Zelovich
,
T.
Hansen
,
Z.-F.
Liu
,
J. B.
Neaton
,
L.
Kronik
, and
O.
Hod
,
J. Chem. Phys.
146
,
092331
(
2017
).
52.
C. M.
Bustamante
,
F. F.
Ramírez
,
C. G.
Sánchez
, and
D. A.
Scherlis
,
J. Chem. Phys.
151
,
084105
(
2019
).
53.
T. N.
Todorov
,
Phys. Rev. B
54
,
5801
(
1996
).
54.
V.
Rizzi
,
Real-Time Quantum Dynamics of Electron–Phonon Systems
(
Springer
,
2018
).
You do not currently have access to this content.