Accurate thermodynamic simulations of correlated fermions using path integral Monte Carlo (PIMC) methods are of paramount importance for many applications such as the description of ultracold atoms, electrons in quantum dots, and warm-dense matter. The main obstacle is the fermion sign problem (FSP), which leads to an exponential increase in computation time both with an increase in the system size and with a decrease in the temperature. Very recently, Hirshberg et al. [J. Chem. Phys. 152, 171102 (2020)] have proposed to alleviate the FSP based on the Bogoliubov inequality. In the present work, we extend this approach by adding a parameter that controls the perturbation, allowing for an extrapolation to the exact result. In this way, we can also use thermodynamic integration to obtain an improved estimate of the fermionic energy. As a test system, we choose electrons in 2D and 3D quantum dots and find in some cases a speed-up exceeding 106, as compared to standard PIMC, while retaining a relative accuracy of ∼0.1%. Our approach is quite general and can readily be adapted to other simulation methods.

1.
G.
Giuliani
and
G.
Vignale
,
Quantum Theory of the Electron Liquid
(
Cambridge University Press
,
Cambridge
,
2008
).
2.
E. Y.
Loh
,
J. E.
Gubernatis
,
R. T.
Scalettar
,
S. R.
White
,
D. J.
Scalapino
, and
R. L.
Sugar
, “
Sign problem in the numerical simulation of many-electron systems
,”
Phys. Rev. B
41
,
9301
9307
(
1990
).
3.
M.
Troyer
and
U. J.
Wiese
, “
Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations
,”
Phys. Rev. Lett.
94
,
170201
(
2005
).
4.
T.
Dornheim
, “
Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter
,”
Phys. Rev. E
100
,
023307
(
2019
).
5.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
569
(
1980
).
6.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
7.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
8.
K.
Burke
, “
Perspective on density functional theory
,”
J. Chem. Phys.
136
,
150901
(
2012
).
9.
D. M.
Ceperley
, “
Fermion nodes
,”
J. Stat. Phys.
63
,
1237
1267
(
1991
).
10.
J. B.
Anderson
, “
Fixed-node quantum Monte Carlo
,”
Int. Rev. Phys. Chem.
14
,
85
112
(
1995
).
11.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
83
(
2001
).
12.
P.
López Ríos
,
A.
Ma
,
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
, “
Inhomogeneous backflow transformations in quantum Monte Carlo calculations
,”
Phys. Rev. E
74
,
066701
(
2006
).
13.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
, and
P.
López Ríos
, “
Continuum variational and diffusion quantum Monte Carlo calculations
,”
J. Phys.: Condens. Matter
22
,
023201
(
2009
).
14.
D. M.
Ceperley
and
B. J.
Alder
, “
Quantum Monte Carlo for molecules: Green’s function and nodal release
,”
J. Chem. Phys.
81
,
5833
5844
(
1984
).
15.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
, “
Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in slater determinant space
,”
J. Chem. Phys.
131
,
054106
(
2009
).
16.
M.
Honma
,
T.
Mizusaki
, and
T.
Otsuka
, “
Diagonalization of Hamiltonians for many-body systems by auxiliary field quantum Monte Carlo technique
,”
Phys. Rev. Lett.
75
,
1284
1287
(
1995
).
17.
M.
Motta
and
S.
Zhang
, “
Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1364
(
2018
).
18.
J. P. F.
LeBlanc
,
A. E.
Antipov
,
F.
Becca
,
I. W.
Bulik
,
G. K.-L.
Chan
,
C.-M.
Chung
,
Y.
Deng
,
M.
Ferrero
,
T. M.
Henderson
,
C. A.
Jiménez-Hoyos
,
E.
Kozik
,
X.-W.
Liu
,
A. J.
Millis
,
N. V.
Prokof’ev
,
M.
Qin
,
G. E.
Scuseria
,
H.
Shi
,
B. V.
Svistunov
,
L. F.
Tocchio
,
I. S.
Tupitsyn
,
S. R.
White
,
S.
Zhang
,
Bo-X.
Zheng
,
Z.
Zhu
, and
Emanuel Gull (Simons Collaboration on the Many-Electron Problem)
, “
Solutions of the two-dimensional hubbard model: Benchmarks and results from a wide range of numerical algorithms
,”
Phys. Rev. X
5
,
041041
(
2015
).
19.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
, “
Towards an exact description of electronic wave functions in real solids
,”
Nature
493
,
365
370
(
2013
).
20.
E. W.
Brown
,
B. K.
Clark
,
J. L.
DuBois
, and
D. M.
Ceperley
, “
Path-integral Monte Carlo simulation of the warm dense homogeneous electron gas
,”
Phys. Rev. Lett.
110
,
146405
(
2013
).
21.
T.
Schoof
,
M.
Bonitz
,
A.
Filinov
,
D.
Hochstuhl
, and
J. W.
Dufty
, “
Configuration path integral Monte Carlo
,”
Contrib. Plasma Phys.
51
,
687
697
(
2011
).
22.
T.
Dornheim
,
S.
Groth
,
A.
Filinov
, and
M.
Bonitz
, “
Permutation blocking path integral Monte Carlo: A highly efficient approach to the simulation of strongly degenerate non-ideal fermions
,”
New J. Phys.
17
,
073017
(
2015
).
23.
D.
Tobias
,
S.
Groth
,
F. D.
Malone
,
T.
Schoof
,
T.
Sjostrom
,
W. M. C.
Foulkes
, and
M.
Bonitz
, “
Ab initio quantum Monte Carlo simulation of the warm dense electron gas
,”
Phys. Plasmas
24
,
056303
(
2017
).
24.
N. S.
Blunt
,
T. W.
Rogers
,
J. S.
Spencer
, and
W. M. C.
Foulkes
, “
Density-matrix quantum Monte Carlo method
,”
Phys. Rev. B
89
,
245124
(
2014
).
25.
Y.
Liu
,
M.
Cho
, and
B.
Rubenstein
, “
Ab initio finite temperature auxiliary field quantum Monte Carlo
,”
J. Chem. Theory Comput.
14
,
4722
4732
(
2018
).
26.
F. D.
Malone
,
N. S.
Blunt
,
J. J.
Shepherd
,
D. K. K.
Lee
,
J. S.
Spencer
, and
W. M. C.
Foulkes
, “
Interaction picture density matrix quantum Monte Carlo
,”
J. Chem. Phys.
143
,
044116
(
2015
).
27.
F. D.
Malone
,
N. S.
Blunt
,
E. W.
Brown
,
D. K. K.
Lee
,
J. S.
Spencer
,
W. M. C.
Foulkes
, and
J. J.
Shepherd
, “
Accurate exchange-correlation energies for the warm dense electron gas
,”
Phys. Rev. Lett.
117
,
115701
(
2016
).
28.
J.
Claes
and
B. K.
Clark
, “
Finite-temperature properties of strongly correlated systems via variational Monte Carlo
,”
Phys. Rev. B
95
,
205109
(
2017
).
29.
T.
Dornheim
,
S.
Groth
, and
M.
Bonitz
, “
Permutation blocking path integral Monte Carlo simulations of degenerate electrons at finite temperature
,”
Contrib. Plasma Phys.
59
,
e201800157
(
2019
).
30.
A.
Yilmaz
,
K.
Hunger
,
T.
Dornheim
,
S.
Groth
, and
M.
Bonitz
, “
Restricted configuration path integral Monte Carlo
,”
J. Chem. Phys.
153
,
124114
(
2020
).
31.
T.
Dornheim
,
J.
Vorberger
, and
M.
Bonitz
, “
Nonlinear electronic density response in warm dense matter
,”
Phys. Rev. Lett.
125
,
085001
(
2020
).
32.
K. P.
Driver
,
F.
Soubiran
, and
B.
Militzer
, “
Path integral Monte Carlo simulations of warm dense aluminum
,”
Phys. Rev. E
97
,
063207
(
2018
).
33.
T.
Dornheim
,
S.
Groth
,
J.
Vorberger
, and
M.
Bonitz
, “
Ab initio path integral Monte Carlo results for the dynamic structure factor of correlated electrons: From the electron liquid to warm dense matter
,”
Phys. Rev. Lett.
121
,
255001
(
2018
).
34.
Frontiers and Challenges in Warm Dense Matter
, edited by
F.
Graziani
,
M. P.
Desjarlais
,
R.
Redmer
, and
S. B.
Trickey
(
Springer, International Publishing
,
2014
).
35.
M.
Bonitz
,
T.
Dornheim
,
Z. A.
Moldabekov
,
S.
Zhang
,
P.
Hamann
,
H.
Kählert
,
A.
Filinov
,
K.
Ramakrishna
, and
J.
Vorberger
, “
Ab initio simulation of warm dense matter
,”
Phys. Plasmas
27
,
042710
(
2020
).
36.
T.
Dornheim
,
S.
Groth
, and
M.
Bonitz
, “
The uniform electron gas at warm dense matter conditions
,”
Phys. Rep.
744
,
1
86
(
2018
).
37.
V. E.
Fortov
, “
Extreme states of matter on earth and in space
,”
Phys.-Usp.
52
,
615
647
(
2009
).
38.
A.
Pribram-Jones
,
S.
Pittalis
,
E. K. U.
Gross
, and
K.
Burke
,
Thermal Density Functional Theory in Context
(
Springer, Heidelberg, Germany
,
2014
), pp.
25
60
.
39.
J. C.
Smith
,
F.
Sagredo
, and
K.
Burke
, “
Warming up density functional theory
,” in
Frontiers of Quantum Chemistry
(
Springer Singapore
,
Singapore
,
2018
), pp.
249
271
.
40.
Y.
Cytter
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
, “
Stochastic density functional theory at finite temperatures
,”
Phys. Rev. B
97
,
115207
(
2018
).
41.
V. V.
Karasiev
,
L.
Calderin
, and
S. B.
Trickey
, “
Importance of finite-temperature exchange correlation for warm dense matter calculations
,”
Phys. Rev. E
93
,
063207
(
2016
).
42.
K.
Ramakrishna
,
T.
Dornheim
, and
J.
Vorberger
, “
Influence of finite temperature exchange-correlation effects in hydrogen
,”
Phys. Rev. B
101
,
195129
(
2020
).
43.
T.
Dornheim
,
S.
Groth
,
T.
Sjostrom
,
F. D.
Malone
,
W. M. C.
Foulkes
, and
M.
Bonitz
, “
Ab initio quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit
,”
Phys. Rev. Lett.
117
,
156403
(
2016
).
44.
S.
Groth
,
T.
Dornheim
,
T.
Sjostrom
,
F. D.
Malone
,
W. M. C.
Foulkes
, and
M.
Bonitz
, “
Ab initio exchange–correlation free energy of the uniform electron gas at warm dense matter conditions
,”
Phys. Rev. Lett.
119
,
135001
(
2017
).
45.
T.
Dornheim
, “
Path-integral Monte Carlo simulations of quantum dipole systems in traps: Superfluidity, quantum statistics, and structural properties
,”
Phys. Rev. A
102
,
023307
(
2020
).
46.
A.
Filinov
, “
Correlation effects and collective excitations in bosonic bilayers: Role of quantum statistics, superfluidity, and the dimerization transition
,”
Phys. Rev. A
94
,
013603
(
2016
).
47.
J.
Schleede
,
A.
Filinov
,
M.
Bonitz
, and
H.
Fehske
, “
Phase diagram of bilayer electron-hole plasmas
,”
Contrib. Plasma Phys.
52
,
819
826
(
2012
).
48.
T.
Dornheim
,
H.
Thomsen
,
P.
Ludwig
,
A.
Filinov
, and
M.
Bonitz
, “
Analyzing quantum correlations made simple
,”
Contrib. Plasma Phys.
56
,
371
379
(
2016
).
49.
I.
Kylänpää
and
E.
Räsänen
, “
Path integral Monte Carlo benchmarks for two-dimensional quantum dots
,”
Phys. Rev. B
96
,
205445
(
2017
).
50.
R.
Egger
,
W.
Häusler
,
C. H.
Mak
, and
H.
Grabert
, “
Crossover from Fermi liquid to Wigner molecule behavior in quantum dots
,”
Phys. Rev. Lett.
82
,
3320
3323
(
1999
).
51.
R.
Egger
and
C. H.
Mak
, “
Multilevel blocking Monte Carlo simulations for quantum dots
,”
Int. J. Mod. Phys. B
15
,
1416
1425
(
2001
).
52.
A. V.
Filinov
,
M.
Bonitz
, and
Y. E.
Lozovik
, “
Wigner crystallization in mesoscopic 2D electron systems
,”
Phys. Rev. Lett.
86
,
3851
3854
(
2001
).
53.
V. S.
Filinov
,
Yu. B.
Ivanov
,
V. E.
Fortov
,
M.
Bonitz
, and
P. R.
Levashov
, “
Color path-integral Monte-Carlo simulations of Quark-Gluon plasma: Thermodynamic and transport properties
,”
Phys. Rev. C
87
,
035207
(
2013
).
54.
V. S.
Filinov
,
M.
Bonitz
,
Y. B.
Ivanov
,
E.-M.
Ilgenfritz
, and
V. E.
Fortov
, “
Thermodynamics of the Quark-Gluon plasma at finite chemical potential: Color path integral Monte Carlo results
,”
Contrib. Plasma Phys.
55
,
203
208
(
2015
).
55.
Y.
Yan
and
D.
Blume
, “
Abnormal superfluid fraction of harmonically trapped few-fermion systems
,”
Phys. Rev. Lett.
112
,
235301
(
2014
).
56.
A. V.
Filinov
,
Y. E.
Lozovik
, and
M.
Bonitz
, “
Path integral simulations of crystallization of quantum confined electrons
,”
Phys. Status Solidi B
221
,
231
234
(
2000
).
57.
B.
Zenker
,
D.
Ihle
,
F. X.
Bronold
, and
H.
Fehske
, “
Electron-hole pair condensation at the semimetal-semiconductor transition: A BCS-BEC crossover scenario
,”
Phys. Rev. B
85
,
121102
(
2012
).
58.
Y.
Ohashi
and
A.
Griffin
, “
BCS-BEC crossover in a gas of Fermi atoms with a Feshbach resonance
,”
Phys. Rev. Lett.
89
,
130402
(
2002
).
59.
S.
Groth
,
T.
Dornheim
, and
J.
Vorberger
, “
Ab initio path integral Monte Carlo approach to the static and dynamic density response of the uniform electron gas
,”
Phys. Rev. B
99
,
235122
(
2019
).
60.
T.
Dornheim
,
Z. A.
Moldabekov
,
J.
Vorberger
, and
S.
Groth
, “
Ab initio path integral Monte Carlo simulation of the uniform electron gas in the high energy density regime
,”
Plasma Phys. Controlled Fusion
62
,
075003
(
2020
).
61.
P.
Hamann
,
T.
Dornheim
,
J.
Vorberger
,
Z. A.
Moldabekov
, and
M.
Bonitz
, “
Dynamic properties of the warm dense electron gas: An ab initio path integral Monte Carlo approach
,”
Phys. Rev. B
102
,
125150
(
2020
).
62.
V. V.
Karasiev
,
S. B.
Trickey
, and
J. W.
Dufty
, “
Status of free-energy representations for the homogeneous electron gas
,”
Phys. Rev. B
99
,
195134
(
2019
).
63.
J. L.
DuBois
,
E. W.
Brown
, and
B. J.
Alder
, “
Overcoming the fermion sign problem in homogeneous systems
,” in
Advances in the Computational Sciences
(
World Scientific, Singapore
,
2017
), Chap. 13, pp.
184
192
.
64.
A. P.
Lyubartsev
and
P. N.
Vorontsov-Velyaminov
, “
Path-integral Monte Carlo method in quantum statistics for a system of n identical fermions
,”
Phys. Rev. A
48
,
4075
4083
(
1993
).
65.
S. E.
Koonin
,
D. J.
Dean
, and
K.
Langanke
, “
Shell model Monte Carlo methods
,”
Phys. Rep.
278
,
1
77
(
1997
).
66.
K.
Langanke
,
D. J.
Dean
,
P. B.
Radha
,
Y.
Alhassid
, and
S. E.
Koonin
, “
Shell-model Monte Carlo studies of fp-shell nuclei
,”
Phys. Rev. C
52
,
718
725
(
1995
).
67.
V. S.
Filinov
,
V. E.
Fortov
,
M.
Bonitz
, and
P. R.
Levashov
, “
Phase transition in strongly degenerate hydrogen plasma
,”
J. Exp. Theor. Phys. Lett.
74
,
384
387
(
2001
).
68.
M.
Takahashi
and
M.
Imada
, “
Monte Carlo calculation of quantum systems
,”
J. Phys. Soc. Jpn.
53
,
963
974
(
1984
).
69.
S. A.
Chin
, “
High-order path-integral Monte Carlo methods for solving quantum dot problems
,”
Phys. Rev. E
91
,
031301
(
2015
).
70.
A. P.
Lyubartsev
, “
Simulation of excited states and the sign problem in the path integral Monte Carlo method
,”
J. Phys. A: Math. Gen.
38
,
6659
6674
(
2005
).
71.
S.
Groth
,
T.
Schoof
,
T.
Dornheim
, and
M.
Bonitz
, “
Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes
,”
Phys. Rev. B
93
,
085102
(
2016
).
72.
B.
Militzer
and
K. P.
Driver
, “
Development of path integral Monte Carlo simulations with localized nodal surfaces for second-row elements
,”
Phys. Rev. Lett.
115
,
176403
(
2015
).
73.
K. P.
Driver
and
B.
Militzer
, “
All-electron path integral Monte Carlo simulations of warm dense matter: Application to water and carbon plasmas
,”
Phys. Rev. Lett.
108
,
115502
(
2012
).
74.
D. M.
Ceperley
, “
Path integrals in the theory of condensed helium
,”
Rev. Mod. Phys.
67
,
279
(
1995
).
75.
A. F.
Verbeure
,
Many-body Boson Systems: Half a Century Later, Theoretical and Mathematical Physics
(
Springer London
,
2010
).
76.
B.
Hirshberg
,
M.
Invernizzi
, and
M.
Parrinello
, “
Path integral molecular dynamics for fermions: Alleviating the sign problem with the Bogoliubov inequality
,”
J. Chem. Phys.
152
,
171102
(
2020
).
77.
B.
Hirshberg
,
V.
Rizzi
, and
M.
Parrinello
, “
Path integral molecular dynamics for bosons
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
21445
21449
(
2019
), https://www.pnas.org/content/116/43/21445.full.pdf.
78.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
2001
), p.
664
.
79.
H.
De Raedt
and
B.
De Raedt
, “
Applications of the generalized trotter formula
,”
Phys. Rev. A
28
,
3575
3580
(
1983
).
80.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
81.
T.
Dornheim
,
S.
Groth
,
A. V.
Filinov
, and
M.
Bonitz
, “
Path integral Monte Carlo simulation of degenerate electrons: Permutation-cycle properties
,”
J. Chem. Phys.
151
,
014108
(
2019
).
82.
M.
Boninsegni
,
N. V.
Prokofev
, and
B. V.
Svistunov
, “
Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations
,”
Phys. Rev. E
74
,
036701
(
2006
).
83.
M.
Boninsegni
,
N. V.
Prokofev
, and
B. V.
Svistunov
, “
Worm algorithm for continuous-space path integral Monte Carlo simulations
,”
Phys. Rev. Lett.
96
,
070601
(
2006
).
84.
A.
Filinov
,
N. V.
Prokof’ev
, and
M.
Bonitz
, “
Berezinskii–Kosterlitz-thouless transition in two-dimensional dipole systems
,”
Phys. Rev. Lett.
105
,
070401
(
2010
).
85.
M.
Boninsegni
and
N. V.
Prokof’ev
, “
Colloquium: Supersolids: What and where are they?
,”
Rev. Mod. Phys.
84
,
759
776
(
2012
).
86.
T.
Dornheim
,
A.
Filinov
, and
M.
Bonitz
, “
Superfluidity of strongly correlated bosons in two- and three-dimensional traps
,”
Phys. Rev. B
91
,
054503
(
2015
).
87.
L.
Pollet
,
M.
Boninsegni
,
A. B.
Kuklov
,
N. V.
Prokof’ev
,
B. V.
Svistunov
, and
M.
Troyer
, “
Superfluidity of grain boundaries in solid 4He
,”
Phys. Rev. Lett.
98
,
135301
(
2007
).
88.
M.
Boninsegni
and
D. M.
Ceperley
, “
Density fluctuations in liquid 4He. Path integrals and maximum entropy
,”
J. Low Temp. Phys.
104
,
339
357
(
1996
).
89.
A.
Filinov
and
M.
Bonitz
, “
Collective and single-particle excitations in two-dimensional dipolar Bose gases
,”
Phys. Rev. A
86
,
043628
(
2012
).
90.
T.
Dornheim
and
J.
Vorberger
, “
Finite-size effects in the reconstruction of dynamic properties from ab initio path integral Monte-Carlo simulations
,”
Phys. Rev. E
102
,
063301
(
2020
).
91.
Y.
Kora
and
M.
Boninsegni
, “
Dynamic structure factor of superfluid 4He from quantum Monte Carlo: Maximum entropy revisited
,”
Phys. Rev. B
98
,
134509
(
2018
).
92.
N.
Prokof’ev
and
B.
Svistunov
, “
Fermi-polaron problem: Diagrammatic Monte Carlo method for divergent sign-alternating series
,”
Phys. Rev. B
77
,
020408
(
2008
).
93.
C.
Ellenberger
,
T.
Ihn
,
C.
Yannouleas
,
U.
Landman
,
K.
Ensslin
,
D.
Driscoll
, and
A. C.
Gossard
, “
Excitation spectrum of two correlated electrons in a lateral quantum dot with negligible Zeeman splitting
,”
Phys. Rev. Lett.
96
,
126806
(
2006
).
94.
F.
Mezzacapo
and
M.
Boninsegni
, “
Structure, superfluidity, and quantum melting of hydrogen clusters
,”
Phys. Rev. A
75
,
033201
(
2007
).
95.
K.
Sakkos
,
J.
Casulleras
, and
J.
Boronat
, “
High order chin actions in path integral Monte Carlo
,”
J. Chem. Phys.
130
,
204109
(
2009
).
96.
L.
Brualla
,
K.
Sakkos
,
J.
Boronat
, and
J.
Casulleras
, “
Higher order and infinite Trotter-number extrapolations in path integral Monte Carlo
,”
J. Chem. Phys.
121
,
636
643
(
2004
).
97.
C. H.
Mak
,
R.
Egger
, and
H.
Weber-Gottschick
, “
Multilevel blocking approach to the fermion sign problem in path-integral Monte Carlo simulations
,”
Phys. Rev. Lett.
81
,
4533
4536
(
1998
).
98.
M. V.
Dikovsky
and
C. H.
Mak
, “
Analysis of the multilevel blocking approach to the fermion sign problem: Accuracy, errors, and practice
,”
Phys. Rev. B
63
,
235105
(
2001
).
99.
T.
Schoof
, “
Configuration path integral Monte Carlo: Ab initio simulations of fermions in the warm dense matter regime
,” Ph.D. thesis,
Christian-Albrechts-Universität zu Kiel
,
Kiel, Germany
,
2016
.
100.
M.
Invernizzi
,
P. M.
Piaggi
, and
M.
Parrinello
, “
A unified approach to enhanced sampling
,”
Phys. Rev. X
10
,
041034
(
2020
).
You do not currently have access to this content.