The surface plasmon response of a cross-sectional segment of a wrinkled gold film is studied using electron energy loss spectroscopy (EELS). EELS data demonstrate that wrinkled gold structures act as a suitable substrate for surface plasmons to propagate. The intense surface variations in these structures facilitate the resonance of a wide range of surface plasmons, leading to the broadband surface plasmon response of these geometries from the near-infrared to visible wavelengths. The metallic nanoparticle boundary element method toolbox is used to simulate plasmon eigenmodes in these structures. Eigenmode simulations show how the diverse morphology of the wrinkled structure leads to its high spectral complexity. Micron-sized structural features that do not provide interactions between segments of the wrinkle have only a small effect on the surface plasmon resonance response, whereas nanofeatures strongly affect the resonant modes of the geometry. According to eigenmode calculations, different eigenenergy shifts around the sharp folds contribute to the broadband response and infrared activity of these structures; these geometrical features also support higher energy (shorter wavelength) symmetric and anti-symmetric plasmon coupling across the two sides of the folds. It is also shown that additional plasmon eigenstates are introduced from hybridization of modes across nanogaps between structural features in close proximity to each other. All of these factors contribute to the broadband response of the wrinkled gold structures.

1.
K.
Arya
,
Z. B.
Su
, and
J. L.
Birman
,
Phys. Rev. Lett.
54
,
1559
(
1985
).
2.
C. K.
Chen
,
T. F.
Heinz
,
D.
Ricard
, and
Y. R.
Shen
,
Phys. Rev. B
27
,
1965
(
1983
).
3.
J. B.
Kim
,
P.
Kim
,
N. C.
Pégard
,
S. J.
Oh
,
C. R.
Kagan
,
J. W.
Fleischer
,
H. A.
Stone
, and
Y.-L.
Loo
,
Nat. Photonics
6
,
327
(
2012
).
4.
M. A.
García
,
J. Phys. Appl. Phys.
44
,
283001
(
2011
).
5.
J.
Homola
,
S. S.
Yee
, and
G.
Gauglitz
,
Sens. Actuators, B
54
,
3
(
1999
).
6.
J. G.
Quinn
,
S.
O’Neill
,
A.
Doyle
,
C.
McAtamney
,
D.
Diamond
,
B. D.
MacCraith
, and
R.
O’Kennedy
,
Anal. Biochem.
281
,
135
(
2000
).
7.
R. L.
Rich
and
D. G.
Myszka
,
Curr. Opin. Biotechnol.
11
,
54
(
2000
).
8.
W. L.
Barnes
,
S. C.
Kitson
,
T. W.
Preist
, and
J. R.
Sambles
,
J. Opt. Soc. Am. A
14
,
1654
(
1997
).
9.
V. A.
Shubin
,
W.
Kim
,
V. P.
Safonov
,
A. K.
Sarychev
,
R. L.
Armstrong
, and
V. M.
Shalaev
,
J. Lightwave Technol.
17
,
2183
(
1999
).
10.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
,
Nature
424
,
824
(
2003
).
11.
A. V.
Zayats
and
I. I.
Smolyaninov
,
J. Opt. A: Pure Appl. Opt.
5
,
S16
(
2003
).
12.
13.
K. A.
Willets
and
R. P.
Van Duyne
,
Annu. Rev. Phys. Chem.
58
,
267
(
2007
).
14.
J.
Homola
and
M.
Piliarik
,
Surface Plasmon Resonance Based Sensors
(
Springer
,
2006
), pp.
45
67
.
15.
A. L.
Koh
,
K.
Bao
,
I.
Khan
,
W. E.
Smith
,
G.
Kothleitner
,
P.
Nordlander
,
S. A.
Maier
, and
D. W.
McComb
,
ACS Nano
3
,
3015
(
2009
).
16.
J. J.
Mock
,
M.
Barbic
,
D. R.
Smith
,
D. A.
Schultz
, and
S.
Schultz
,
J. Chem. Phys.
116
,
6755
(
2002
).
17.
F.-P.
Schmidt
,
H.
Ditlbacher
,
U.
Hohenester
,
A.
Hohenau
,
F.
Hofer
, and
J. R.
Krenn
,
Nano Lett.
12
,
5780
(
2012
).
18.
C.
Battaglia
,
J.
Escarré
,
K.
Söderström
,
M.
Charrière
,
M.
Despeisse
,
F.-J.
Haug
, and
C.
Ballif
,
Nat. Photonics
5
,
535
(
2011
).
19.
H.
Gao
,
J. K.
Hyun
,
M. H.
Lee
,
J.-C.
Yang
,
L. J.
Lauhon
, and
T. W.
Odom
,
Nano Lett.
10
,
4111
(
2010
).
20.
E.
Garnett
and
P.
Yang
,
Nano Lett.
10
,
1082
(
2010
).
21.
K. S.
Nalwa
,
J.-M.
Park
,
K.-M.
Ho
, and
S.
Chaudhary
,
Adv. Mater.
23
,
112
(
2011
).
22.
A.
Losquin
,
S.
Camelio
,
D.
Rossouw
,
M.
Besbes
,
F.
Pailloux
,
D.
Babonneau
,
G. A.
Botton
,
J.-J.
Greffet
,
O.
Stéphan
, and
M.
Kociak
,
Phys. Rev. B
88
,
115427
(
2013
).
23.
B.
Zhang
,
M.
Zhang
,
K.
Song
,
Q.
Li
, and
T.
Cui
,
Appl. Phys. Lett.
103
,
023104
(
2013
).
24.
T.
Ohzono
,
K.
Suzuki
,
T.
Yamaguchi
, and
N.
Fukuda
,
Adv. Opt. Mater.
1
,
374
(
2013
).
25.
C. M.
Gabardo
,
Y.
Zhu
,
L.
Soleymani
, and
J. M.
Moran-Mirabal
,
Adv. Funct. Mater.
23
,
3030
(
2013
).
26.
Y.
Sun
,
W. M.
Choi
,
H.
Jiang
,
Y. Y.
Huang
, and
J. A.
Rogers
,
Nat. Nanotechnol.
1
,
201
(
2006
).
27.
C.
Hanske
,
E. H.
Hill
,
D.
Vila-Liarte
,
G.
González-Rubio
,
C.
Matricardi
,
A.
Mihi
, and
L. M.
Liz-Marzán
,
ACS Appl. Mater. Interfaces
11
,
11763
(
2019
).
28.
A.
Schweikart
,
N.
Pazos-Pérez
,
R. A.
Alvarez-Puebla
, and
A.
Fery
,
Soft Matter
7
,
4093
(
2011
).
29.
C. G.
Artur
and
W.-C.
Shih
, in
Miniature Fluidic Devices for Rapid Biological Detection
, edited by
S.-H.
Oh
,
C.
Escobedo
, and
A. G.
Brolo
(
Springer International Publishing
,
Cham
,
2018
), pp.
25
67
.
30.
J.
Tang
,
H.
Guo
,
M.
Chen
,
J.
Yang
,
D.
Tsoukalas
,
B.
Zhang
,
J.
Liu
,
C.
Xue
, and
W.
Zhang
,
Sens. Actuators, B
218
,
145
(
2015
).
31.
L.
Zhang
,
X.
Lang
,
A.
Hirata
, and
M.
Chen
,
ACS Nano
5
,
4407
(
2011
).
32.
C.
Yu
,
C.
Masarapu
,
J.
Rong
,
B.
Wei
, and
H.
Jiang
,
Adv. Mater.
21
,
4793
(
2009
).
33.
K.
Arya
and
R.
Zeyher
,
Phys. Rev. B
28
,
4090
(
1983
).
34.
J. M.
Elson
and
R. H.
Ritchie
,
Phys. Rev. B
4
,
4129
(
1971
).
35.
N.
Pazos-Pérez
,
W.
Ni
,
A.
Schweikart
,
R. A.
Alvarez-Puebla
,
A.
Fery
, and
L. M.
Liz-Marzán
,
Chem. Sci.
1
,
174
(
2010
).
36.
W. H.
Richardson
,
J. Opt. Soc. Am.
62
,
55
(
1972
).
37.
L. B.
Lucy
,
Astron. J.
79
,
745
(
1974
).
38.
icbicket
(
2017
). “
icbicket/DataAnalysis: SpectrumImagingAnalysisPy
,” Zenodo.
39.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
1985
).
40.
U.
Hohenester
,
Comput. Phys. Commun.
185
,
1177
(
2014
).
41.
U.
Hohenester
and
A.
Trügler
,
Comput. Phys. Commun.
183
,
370
(
2012
).
42.
J.
Waxenegger
,
A.
Trügler
, and
U.
Hohenester
,
Comput. Phys. Commun.
193
,
138
(
2015
).
43.
D. R.
Fredkin
and
I. D.
Mayergoyz
,
Phys. Rev. Lett.
91
,
253902
(
2003
).
44.
G.
Botton
, in
Science of Microscopy
, edited by
P. W.
Hawkes
and
J. C. H.
Spence
(
Springer
,
New York, NY
,
2007
), pp.
273
405
.
45.
M.-L.
Thèye
,
Phys. Rev. B
2
,
3060
(
1970
).
46.
B.
Sosa
and
E.
Pazur
, “
Characterization of surface plasmon resonances in metallic planar nanostructures by electron energy loss spectroscopy
,” Ph.D. thesis,
McMaster University
,
2017
.
47.
E. P.
Bellido
,
I. C.
Bicket
, and
G. A.
Botton
, “
The Effects of Bending on Nanowire and Edge modes
,” (unpublished).
48.
P. K.
Jain
,
S.
Eustis
, and
M. A.
El-Sayed
,
J. Phys. Chem. B
110
,
18243
(
2006
).
49.
S. S. M.
Masouleh
,
S.
Rosendahl
,
S.
Read
, and
G. A.
Botton
, (
IEEE
,
2020
), p.
1
.
50.
R. B.
Pettit
,
J.
Silcox
, and
R.
Vincent
,
Phys. Rev. B
11
,
3116
(
1975
).
51.
W.
Steinmann
,
Phys. Status Solidi B
28
,
437
(
1968
).
52.
N.
Zabala
,
A.
Rivacoba
, and
P. M.
Echenique
,
Phys. Rev. B
56
,
7623
(
1997
).
53.
E.
Prodan
,
C.
Radloff
,
N. J.
Halas
, and
P.
Nordlander
,
Science
302
,
419
(
2003
).
54.
P.
Nordlander
,
C.
Oubre
,
E.
Prodan
,
K.
Li
, and
M. I.
Stockman
,
Nano Lett.
4
,
899
(
2004
).

Supplementary Material

You do not currently have access to this content.