We studied the positron (e+) interaction with the hydrogen molecular dianion H22− to form the positronic bound state of [H; e+; H] using the first-principles quantum Monte Carlo method combined with the multi-component molecular orbital one. H22− itself is unstable, but it was shown that such an unbound H22− may become stable by intermediating a positron and forming the positronic covalent bond of the [H; e+; H] system [J. Charry et al., Angew. Chem., Int. Ed. 57, 8859–8864 (2018)]. We newly found that [H; e+; H] has double minima containing another positronic bound state of [H2; Ps]-like configuration with the positronium negative ion Ps at the bond distance approximately equal to the equilibrium H2 molecule. Our multi-component variational Monte Carlo calculation and the multi-component configuration interaction one resulted in the positronic covalent bonded structure being the global minimum, whereas a more sophisticated multi-component diffusion Monte Carlo calculation clearly showed that the [H2; Ps]-like structure at the short bond distance is energetically more stable than the positronic covalent bonded one. The relaxation due to interparticle correlation effects pertinent to Ps (or Ps) formation is crucial for the formation of the PsA2-like structure for binding a positron to the non-polar negatively charged dihydrogen.

1.
F.
Tuomisto
and
I.
Makkonen
, “
Defect identification in semiconductors with positron annihilation: Experiment and theory
,”
Rev. Mod. Phys.
85
,
1583
1631
(
2013
).
2.
M.
Reivich
,
D.
Kuhl
,
A.
Wolf
,
J.
Greenberg
,
M.
Phelps
,
T.
Ido
,
V.
Casella
,
J.
Fowler
,
E.
Hoffman
,
A.
Alavi
,
P.
Som
, and
L.
Sokoloff
, “
The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man
,”
Circ. Res.
44
,
127
137
(
1979
).
3.
I. H.
Shon
,
M. J.
O’Doherty
, and
M. N.
Maisey
, “
Positron emission tomography in lung cancer
,”
Semin. Nucl. Med.
32
,
240
271
(
2002
).
4.
P.
Indelicato
,
G.
Chardin
,
P.
Grandemange
,
D.
Lunney
,
V.
Manea
,
A.
Badertscher
,
P.
Crivelli
,
A.
Curioni
,
A.
Marchionni
,
B.
Rossi
,
A.
Rubbia
,
V.
Nesvizhevsky
,
D.
Brook-Roberge
,
P.
Comini
,
P.
Debu
,
P.
Dupré
,
L.
Liszkay
,
B.
Mansoulié
,
P.
Pérez
,
J.-M.
Rey
,
B.
Reymond
,
N.
Ruiz
,
Y.
Sacquin
,
B.
Vallage
,
F.
Biraben
,
P.
Cladé
,
A.
Douillet
,
G.
Dufour
,
S.
Guellati
,
L.
Hilico
,
A.
Lambrecht
,
R.
Guérout
,
J.-P.
Karr
,
F.
Nez
,
S.
Reynaud
,
C. I.
Szabo
,
V.-Q.
Tran
,
J.
Trapateau
,
A.
Mohri
,
Y.
Yamazaki
,
M.
Charlton
,
S.
Eriksson
,
N.
Madsen
,
D. P.
van der Werf
,
N.
Kuroda
,
H.
Torii
,
Y.
Nagashima
,
F.
Schmidt-Kaler
,
J.
Walz
,
S.
Wolf
,
P.-A.
Hervieux
,
G.
Manfredi
,
A.
Voronin
,
P.
Froelich
,
S.
Wronka
, and
M.
Staszczak
, “
The Gbar project, or how does antimatter fall?
,”
Hyperfine Interact.
228
,
141
150
(
2014
).
5.
P.
Pérez
,
D.
Banerjee
,
F.
Biraben
,
D.
Brook-Roberge
,
M.
Charlton
,
P.
Cladé
,
P.
Comini
,
P.
Crivelli
,
O.
Dalkarov
,
P.
Debu
,
A.
Douillet
,
G.
Dufour
,
P.
Dupré
,
S.
Eriksson
,
P.
Froelich
,
P.
Grandemange
,
S.
Guellati
,
R.
Guérout
,
J. M.
Heinrich
,
P.-A.
Hervieux
,
L.
Hilico
,
A.
Husson
,
P.
Indelicato
,
S.
Jonsell
,
J.-P.
Karr
,
K.
Khabarova
,
N.
Kolachevsky
,
N.
Kuroda
,
A.
Lambrecht
,
A. M. M.
Leite
,
L.
Liszkay
,
D.
Lunney
,
N.
Madsen
,
G.
Manfredi
,
B.
Mansoulié
,
Y.
Matsuda
,
A.
Mohri
,
T.
Mortensen
,
Y.
Nagashima
,
V.
Nesvizhevsky
,
F.
Nez
,
C.
Regenfus
,
J.-M.
Rey
,
J.-M.
Reymond
,
S.
Reynaud
,
A.
Rubbia
,
Y.
Sacquin
,
F.
Schmidt-Kaler
,
N.
Sillitoe
,
M.
Staszczak
,
C. I.
Szabo-Foster
,
H.
Torii
,
B.
Vallage
,
M.
Valdes
,
D. P.
van der Werf
,
A.
Voronin
,
J.
Walz
,
S.
Wolf
,
S.
Wronka
, and
Y.
Yamazaki
, “
The GBAR antimatter gravity experiment
,”
Hyperfine Interact.
233
,
21
27
(
2015
).
6.
L. D.
Barnes
,
S. J.
Gilbert
, and
C. M.
Surko
, “
Energy-resolved positron annihilation for molecules
,”
Phys. Rev. A
67
,
032706
(
2003
).
7.
J. A.
Young
and
C. M.
Surko
, “
Feshbach-resonance-mediated annihilation in positron interactions with large molecules
,”
Phys. Rev. A
77
,
052704
(
2008
).
8.
J. A.
Young
and
C. M.
Surko
, “
Feshbach-resonance-mediated positron annihilation in small molecules
,”
Phys. Rev. A
78
,
032702
(
2008
).
9.
J. R.
Danielson
,
J. J.
Gosselin
, and
C. M.
Surko
, “
Dipole enhancement of positron binding to molecules
,”
Phys. Rev. Lett.
104
,
233201
(
2010
).
10.
G. F.
Gribakin
, “
Mechanisms of positron annihilation on molecules
,”
Phys. Rev. A
61
,
022720
(
2000
).
11.
G. F.
Gribakin
and
C. M. R.
Lee
, “
Positron annihilation in molecules by capture into vibrational Feshbach resonances of infrared-active modes
,”
Phys. Rev. Lett.
97
,
193201
(
2006
).
12.
O. H.
Crawford
, “
Negative ions of polar molecules
,”
Mol. Phys.
20
,
585
591
(
1971
).
13.
H. A.
Kurtz
and
K. D.
Jordan
, “
Ab initio study of the positron affinity of LiH
,”
J. Phys. B: At. Mol. Phys.
11
,
L479
L482
(
1978
).
14.
K.
Strasburger
, “
Quantum chemical study on complexes of the LiH molecule with e+, Ps and Ps including correlation energy
,”
Chem. Phys. Lett.
253
,
49
52
(
1996
).
15.
M.
Tachikawa
,
K.
Mori
,
K.
Suzuki
, and
K.
Iguchi
, “
Full variational molecular orbital method: Application to the positron-molecule complexes
,”
Int. J. Quantum Chem.
70
,
491
501
(
1998
).
16.
M.
Tachikawa
,
R. J.
Buenker
, and
M.
Kimura
, “
Bound states of positron with urea and acetone molecules using configuration interaction ab initio molecular orbital approach
,”
J. Chem. Phys.
119
,
5005
(
2003
).
17.
K.
Strasburger
, “
Positronic formaldehyde—The configuration interaction study
,”
Struct. Chem.
15
,
415
420
(
2004
).
18.
R. J.
Buenker
,
H.-P.
Liebermann
,
V.
Melnikov
,
M.
Tachikawa
,
L.
Pichl
, and
M.
Kimura
, “
Positron binding energies for alkali hydrides
,”
J. Phys. Chem. A
109
,
5956
5964
(
2005
).
19.
M.
Tachikawa
,
Y.
Kita
, and
R. J.
Buenker
, “
Bound states of the positron with nitrile species with a configuration interaction multi-component molecular orbital approach
,”
Phys. Chem. Chem. Phys.
13
,
2701
2705
(
2011
).
20.
Y.
Kita
,
R.
Maezono
,
M.
Tachikawa
,
M. D.
Towler
, and
R. J.
Needs
, “
Ab initio quantum Monte Carlo study of the binding of a positron to alkali-metal hydrides
,”
J. Chem. Phys.
135
,
054108
(
2011
).
21.
K.
Koyanagi
,
Y.
Kita
, and
M.
Tachikawa
, “
Systematic theoretical investigation of a positron binding to amino acid molecules using the ab initio multi-component molecular orbital approach
,”
Eur. Phys. J. D
66
,
121
(
2012
).
22.
Y.
Oba
and
M.
Tachikawa
, “
Theoretical investigation of a positron binding to an aspartame molecule using the ab initio multicomponent molecular orbital approach
,”
Int. J. Quantum Chem.
114
,
1146
1149
(
2014
).
23.
T.
Oyamada
and
M.
Tachikawa
, “
Multi-component molecular orbital study on positron attachment to alkali-metal hydride molecules: Nature of chemical bonding and dissociation limits of [LiH; e+]
,”
Eur. Phys. J. D
68
,
231
(
2014
).
24.
H. A.
Kurtz
and
K. D.
Jordan
, “
Theoretical studies of positron complexes with atomic anions
,”
J. Chem. Phys.
72
,
493
(
1980
).
25.
J.
Mitroy
,
M. W. J.
Bromley
, and
G. G.
Ryzhikh
, “
Positron and positronium binding to atoms
,”
J. Phys. B: At., Mol. Opt. Phys.
35
,
R81
R116
(
2002
).
26.
H.
Chojnacki
and
K.
Strasburger
, “
Configuration interaction study of the positronic hydrogen cyanide molecule
,”
Mol. Phys.
104
,
2273
2276
(
2006
).
27.
Y.
Kita
,
R.
Maezono
,
M.
Tachikawa
,
M.
Towler
, and
R. J.
Needs
, “
Ab initio quantum Monte Carlo study of the positronic hydrogen cyanide molecule
,”
J. Chem. Phys.
131
,
134310
(
2009
).
28.
M. M.
Wołcyrz
,
K.
Strasburger
, and
H.
Chojnacki
, “
Two-photon annihilation rate of the positronic HCN molecule
,”
Mol. Phys.
111
,
345
352
(
2013
).
29.
J.
Charry
,
J.
Romero
,
M. T. do N.
Varella
, and
A.
Reyes
, “
Calculation of positron binding energies of amino acids with the any-particle molecular-orbital approach
,”
Phys. Rev. A
89
,
052709
(
2014
).
30.
M.
Nummela
,
H.
Raebiger
,
D.
Yoshida
, and
M.
Tachikawa
, “
Positron binding properties of glycine and its aqueous complexes
,”
J. Phys. Chem. A
120
,
4037
4042
(
2016
).
31.
Y.
Sugiura
,
K.
Suzuki
,
S.
Koido
,
T.
Takayanagi
,
Y.
Kita
, and
M.
Tachikawa
, “
Quantum dynamics calculation of the annihilation spectrum for the positron–proline scattering
,”
Comput. Theor. Chem.
1147
,
1
7
(
2019
).
32.
J.
Charry
,
M. T. do N.
Varella
, and
A.
Reyes
, “
Binding matter with antimatter: The covalent positron bond
,”
Angew. Chem., Int. Ed.
57
,
8859
8864
(
2018
).
33.
F.
Moncada
,
L.
Pedraza-González
,
J.
Charry
,
M. T. do N.
Varella
, and
A.
Reyes
, “
Covalent bonds in positron dihalides
,”
Chem. Sci.
11
,
44
52
(
2020
).
34.
A.
Ore
, “
The existence of Wheeler-compounds
,”
Phys. Rev.
83
,
665
(
1951
).
35.
G. G.
Ryzhikh
,
J.
Mitroy
, and
K.
Varga
, “
The structure of exotic atoms containing positrons and positronium
,”
J. Phys. B: At., Mol. Opt. Phys.
31
,
3965
3996
(
1998
).
36.
J.
Mitroy
and
G. G.
Ryzhikh
, “
Improved binding energies for LiPs, e+Be, NaPs and e+Mg
,”
J. Phys. B: At., Mol. Opt. Phys.
34
,
2001
2007
(
2001
).
37.
M.
Tachikawa
,
K.
Mori
,
H.
Nakai
, and
K.
Iguchi
, “
An extension of ab initio molecular orbital theory to nuclear motion
,”
Chem. Phys. Lett.
290
,
437
442
(
1998
).
38.
J.
Mitroy
,
S.
Bubin
,
W.
Horiuchi
,
Y.
Suzuki
,
L.
Adamowicz
,
W.
Cencek
,
K.
Szalewicz
,
J.
Komasa
,
D.
Blume
, and
K.
Varga
, “
Theory and application of explicitly correlated Gaussians
,”
Rev. Mod. Phys.
85
,
693
749
(
2013
).
39.
L. E.
McMurchie
and
E. R.
Davidson
, “
One- and two-electron integrals over Cartesian Gaussian functions
,”
J. Comput. Phys.
26
,
218
231
(
1978
).
40.
I.
Shavitt
,
The Unitary Group for the Evaluation of Electronic Energy Matrix Elements
, edited by
J.
Hinze
(
Springer
,
Berlin
,
1981
).
41.
T.
Kato
, “
On the eigenfunctions of many-particle systems in quantum mechanics
,”
Commun. Pure Appl. Math.
10
,
151
177
(
1957
).
42.
A.
Ma
,
M. D.
Towler
,
N. D.
Drummond
, and
R. J.
Needs
, “
Scheme for adding electron–nucleus cusps to Gaussian orbitals
,”
J. Chem. Phys.
122
,
224322
(
2005
).
43.
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
, “
Jastrow correlation factor for atoms, molecules, and solids
,”
Phys. Rev. B
70
,
235119
(
2004
).
44.
C. J.
Umrigar
,
K. G.
Wilson
, and
J. W.
Wilkins
, “
Optimized trial wave functions for quantum Monte Carlo calculations
,”
Phys. Rev. Lett.
60
,
1719
(
1988
).
45.
P. R. C.
Kent
,
R. J.
Needs
, and
G.
Rajagopal
, “
Monte Carlo energy and variance-minimization techniques for optimizing many-body wave functions
,”
Phys. Rev. B
59
,
12344
(
1999
).
46.
N. D.
Drummond
and
R. J.
Needs
, “
Variance-minimization scheme for optimizing Jastrow factors
,”
Phys. Rev. B
72
,
085124
(
2005
).
47.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
(
1953
).
48.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
(
2001
).
49.
M.
Tachikawa
,
K.
Taneda
, and
K.
Mori
, “
Simultaneous optimization of GTF exponents and their centers with fully variational treatment of Hartree–Fock molecular orbital calculation
,”
Int. J. Quantum Chem.
75
,
497
510
(
1999
).
50.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
,
P.
López Ríos
, and
J. R.
Trail
, “
Variational and diffusion quantum Monte Carlo calculations with the CASINO code
,”
J. Chem. Phys.
152
,
154106
(
2020
).
51.
C. J.
Umrigar
,
J.
Toulouse
,
C.
Filippi
,
S.
Sorella
, and
R. G.
Hennig
, “
Alleviation of the fermion-sign problem by optimization of many-body wave functions
,”
Phys. Rev. Lett.
98
,
110201
(
2007
).
52.
K. M.
Rasch
,
S.
Hu
, and
L.
Mitas
, “
Communication: Fixed-node errors in quantum Monte Carlo: Interplay of electron density and node nonlinearities
,”
J. Chem. Phys.
140
,
041102
(
2014
).
53.
G. G.
Ryzhikh
and
J.
Mitroy
, “
Positron annihilation profiles for HPs and He(3Se)e+
,”
J. Phys. B: At., Mol. Opt. Phys.
32
,
4051
4064
(
1999
).
54.
J. S.
Sims
and
S. A.
Hagstrom
, “
High precision variational calculations for the Born-Oppenheimer energies of the ground state of the hydrogen molecule
,”
J. Chem. Phys.
124
,
094101
(
2006
).
55.
G. W. F.
Drake
and
M.
Grigorescu
, “
Binding energy of the positronium negative ion: Relativistic and QED energy shifts
,”
J. Phys. B: At., Mol. Opt. Phys.
38
,
3377
3393
(
2005
).
You do not currently have access to this content.