The diffusion Monte Carlo (DMC), auxiliary field quantum Monte Carlo (AFQMC), and equation-of-motion coupled cluster (EOM-CC) methods are used to calculate the electron binding energy (EBE) of the non-valence anion state of a model (H2O)4 cluster. Two geometries are considered, one at which the anion is unbound and the other at which it is bound in the Hartree–Fock (HF) approximation. It is demonstrated that DMC calculations can recover from the use of a HF trial wave function that has collapsed onto a discretized continuum solution, although larger EBEs are obtained when using a trial wave function for the anion that provides a more realistic description of the charge distribution and, hence, of the nodal surface. For the geometry at which the cluster has a non-valence correlation-bound anion, both the inclusion of triples in the EOM-CC method and the inclusion of supplemental diffuse d functions in the basis set are important. DMC calculations with suitable trial wave functions give EBE values in good agreement with our best estimate EOM-CC result. AFQMC using a trial wave function for the anion with a realistic electron density gives a value of the EBE nearly identical to the EOM-CC result when using the same basis set. For the geometry at which the anion is bound in the HF approximation, the inclusion of triple excitations in the EOM-CC calculations is much less important. The best estimate EOM-CC EBE value is in good agreement with the results of DMC calculations with appropriate trial wave functions.

1.
V. K.
Voora
,
A.
Kairalapova
,
T.
Sommerfeld
, and
K. D.
Jordan
, “
Theoretical approaches for treating non-valence correlation-bound anions
,”
J. Chem. Phys.
147
,
214114
(
2017
).
2.
A.
Kairalapova
,
K. D.
Jordan
,
D. N.
Maienshein
,
M. C.
Fair
, and
M. F.
Falcetta
, “
Prediction of a nonvalence temporary anion shape resonance for a model (H2O)4 system
,”
J. Phys. Chem. A
123
,
2719
2726
(
2019
).
3.
A.
Kairalapova
,
K. D.
Jordan
,
M. F.
Falcetta
,
D. K.
Steiner
,
B. L.
Sutter
, and
J. S.
Gowen
, “
Prediction of a non-valence temporary anion state of (NaCl)2
,”
J. Phys. Chem. B
123
,
9198
9205
(
2019
).
4.
J. P.
Rogers
,
C. S.
Anstöter
, and
J. R. R.
Verlet
, “
Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state
,”
Nat. Chem.
10
,
341
346
(
2018
).
5.
J. P.
Rogers
,
C. S.
Anstöter
, and
J. R. R.
Verlet
, “
Evidence of electron capture of an outgoing photoelectron wave by a nonvalence state in (C6F6)n
,”
J. Phys. Chem. Lett.
9
,
2504
2509
(
2018
).
6.
J. N.
Bull
,
C. S.
Anstöter
, and
J. R. R.
Verlet
, “
Ultrafast valence to non-valence excited state dynamics in a common anionic chromophore
,”
Nat. Commun.
10
,
5820
(
2019
).
7.
J. R. R.
Verlet
,
C. S.
Anstöter
,
J. N.
Bull
, and
J. P.
Rogers
, “
Role of nonvalence states in the ultrafast dynamics of isolated anions
,”
J. Phys. Chem. A
124
,
3507
3519
(
2020
).
8.
V. K.
Voora
,
L. S.
Cederbaum
, and
K. D.
Jordan
, “
Existence of a correlation bound s-type anion state of C60
,”
J. Phys. Chem. Lett.
4
,
849
853
(
2013
).
9.
V. K.
Voora
and
K. D.
Jordan
, “
Nonvalence correlation-bound anion states of spherical fullerenes
,”
Nano Lett.
14
,
4602
4606
(
2014
).
10.
V. K.
Voora
and
K. D.
Jordan
, “
Nonvalence correlation-bound anion state of C6F6: Doorway to low-energy electron capture
,”
J. Phys. Chem. A
118
,
7201
7205
(
2014
).
11.
T. H.
Choi
and
K. D.
Jordan
, “
Model potential study of non-valence correlation-bound anions of (C60)n clusters: The role of electric field-induced charge transfer
,”
Faraday Discuss.
217
,
547
560
(
2019
).
12.
V. K.
Voora
and
K. D.
Jordan
, “
Nonvalence correlation-bound anion states of polycyclic aromatic hydrocarbons
,”
J. Phys. Chem. Lett.
6
,
3994
3997
(
2015
).
13.
T.
Sommerfeld
,
B.
Bhattarai
,
V. P.
Vysotskiy
, and
L. S.
Cederbaum
, “
Correlation-bound anions of NaCl clusters
,”
J. Chem. Phys.
133
,
114301
(
2010
).
14.
V. G.
Bezchastnov
,
V. P.
Vysotskiy
, and
L. S.
Cederbaum
, “
Anions of xenon clusters bound by long-range electron correlations
,”
Phys. Rev. Lett.
107
,
133401
(
2011
).
15.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
622
(
1934
).
16.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
17.
R. C.
Lochan
and
M.
Head-Gordon
, “
Orbital-optimized opposite-spin scaled second-order correlation: An economical method to improve the description of open-shell molecules
,”
J. Chem. Phys.
126
,
164101
(
2007
).
18.
J.
Čížek
,
J.
Paldus
, and
L.
Šroubková
, “
Cluster expansion analysis for delocalized systems
,”
Int. J. Quantum Chem.
3
,
149
167
(
1969
).
19.
D. C.
Comeau
and
R. J.
Bartlett
, “
The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states
,”
Chem. Phys. Lett.
207
,
414
423
(
1993
).
20.
A. K.
Dutta
,
M.
Saitow
,
B.
Demoulin
,
F.
Neese
, and
R.
Izsák
, “
A domain-based local pair natural orbital implementation of the equation of motion coupled cluster method for electron attached states
,”
J. Chem. Phys.
150
,
164123
(
2019
).
21.
R. C.
Grimm
and
R. G.
Storer
, “
Monte-Carlo solution of Schrödinger’s equation
,”
J. Comput. Phys.
7
,
134
156
(
1971
).
22.
J. B.
Anderson
, “
A random-walk simulation of the Schrödinger equation: H+3
,”
J. Chem. Phys.
63
,
1499
1503
(
1975
).
23.
J. B.
Anderson
, “
Quantum chemistry by random walk. H 2P, H+3 D3h1A1, H23+u, H41+g, Be 1S
,”
J. Chem. Phys.
65
,
4121
4127
(
1976
).
24.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
83
(
2001
).
25.
P.
López Ríos
,
A.
Ma
,
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
, “
Inhomogeneous backflow transformations in quantum Monte Carlo calculations
,”
Phys. Rev. E
74
,
066701
(
2006
).
26.
R.
Blankenbecler
,
D. J.
Scalapino
, and
R. L.
Sugar
, “
Monte Carlo calculations of coupled boson-fermion systems. I
,”
Phys. Rev. D
24
,
2278
2286
(
1981
).
27.
G.
Sugiyama
and
S. E.
Koonin
, “
Auxiliary field Monte-Carlo for quantum many-body ground states
,”
Ann. Phys.
168
,
1
26
(
1986
).
28.
D. J.
Scalapino
and
R. L.
Sugar
, “
Monte Carlo calculations of coupled boson-fermion systems. II
,”
Phys. Rev. B
24
,
4295
4308
(
1981
).
29.
S.
Zhang
and
H.
Krakauer
, “
Quantum Monte Carlo method using phase-free random walks with Slater determinants
,”
Phys. Rev. Lett.
90
,
136401
(
2003
).
30.
S.
Zhang
,
J.
Carlson
, and
J. E.
Gubernatis
, “
Constrained path Monte Carlo method for fermion ground states
,”
Phys. Rev. B
55
,
7464
7477
(
1997
).
31.
M.
Motta
and
S.
Zhang
, “
Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1364
(
2018
).
32.
S.
Zhang
, “
Ab initio electronic structure calculations by auxiliary-field quantum Monte Carlo
,” in
Handbook of Materials Modeling: Methods: Theory and Modeling
, edited by
W.
Andreoni
and
S.
Yip
(
Springer International Publishing
,
2018
), pp.
1
27
.
33.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
34.
J. F.
Stanton
and
J.
Gauss
, “
Perturbative treatment of the similarity transformed Hamiltonian in equation-of-motion coupled-cluster approximations
,”
J. Chem. Phys.
103
,
1064
1076
(
1995
).
35.
D. A.
Matthews
and
J. F.
Stanton
, “
A new approach to approximate equation-of-motion coupled cluster with triple excitations
,”
J. Chem. Phys.
145
,
124102
(
2016
).
36.
S. A.
Kucharski
,
M.
Włoch
,
M.
Musiał
, and
R. J.
Bartlett
, “
Coupled-cluster theory for excited electronic states: The full equation-of-motion coupled-cluster single, double, and triple excitation method
,”
J. Chem. Phys.
115
,
8263
8266
(
2001
).
37.
K.
Kowalski
and
P.
Piecuch
, “
The active-space equation-of-motion coupled-cluster methods for excited electronic states: Full EOMCCSDt
,”
J. Chem. Phys.
115
,
643
651
(
2001
).
38.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
11007
1023
(
1989
).
39.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
40.
J. F.
Stanton
,
J.
Gauss
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
, and
P. G.
Szalay
, “
CFOUR: Coupled-cluster techniques for computational chemistry, a quantum-chemical program package
,” with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
O.
Christiansen
,
F.
Engel
,
R.
Faber
,
M.
Heckert
,
O.
Heun
,
M.
Hilgenberg
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
T.
Kirsch
,
K.
Klein
,
W. J.
Lauderdale
,
F.
Lipparini
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jorgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
, for the current version, see http://www.cfour.de.
41.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
, “
Coupled-cluster techniques for computational chemistry: The CFOUR program package
,”
J. Chem. Phys.
152
,
214108
(
2020
).
42.
R.
Jastrow
, “
Many-body problem with strong forces
,”
Phys. Rev.
98
,
1479
1484
(
1955
).
43.
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
, “
Jastrow correlation factor for atoms, molecules, and solids
,”
Phys. Rev. B
70
,
235119
(
2004
).
44.
J.
Kim
,
A. D.
Baczewski
,
T. D.
Beaudet
,
A.
Benali
,
M. C.
Bennett
,
M. A.
Berrill
,
N. S.
Blunt
,
E. J. L.
Borda
,
M.
Casula
,
D. M.
Ceperley
,
S.
Chiesa
,
B. K.
Clark
,
R. C.
Clay
,
K. T.
Delaney
,
M.
Dewing
,
K. P.
Esler
,
H.
Hao
,
O.
Heinonen
,
P. R. C.
Kent
,
J. T.
Krogel
,
I.
Kylänpää
,
Y. W.
Li
,
M. G.
Lopez
,
Y.
Luo
,
F. D.
Malone
,
R. M.
Martin
,
A.
Mathuriya
,
J.
McMinis
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
W. D.
Parker
,
S. D.
Pineda Flores
,
N. A.
Romero
,
B. M.
Rubenstein
,
J. A. R.
Shea
,
H.
Shin
,
L.
Shulenburger
,
A. F.
Tillack
,
J. P.
Townsend
,
N. M.
Tubman
,
B.
Van Der Goetz
,
J. E.
Vincent
,
D. C.
Yang
,
Y.
Yang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids
,”
J. Phys.: Condens. Matter
30
,
195901
(
2018
).
45.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
46.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
47.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
48.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
49.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rancurel
, “
Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions
,”
J. Chem. Phys.
58
,
5745
5759
(
1973
).
50.
A.
Annaberdiyev
,
G.
Wang
,
C. A.
Melton
,
M.
Chandler Bennett
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 3d transition metal series
,”
J. Chem. Phys.
149
,
134108
(
2018
).
51.
M. C.
Bennett
,
C. A.
Melton
,
A.
Annaberdiyev
,
G.
Wang
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials for correlated calculations
,”
J. Chem. Phys.
147
,
224106
(
2017
).
52.
M.
Casula
, “
Beyond the locality approximation in the standard diffusion Monte Carlo method
,”
Phys. Rev. B
74
,
161102
(
2006
).
53.
P. R. C.
Kent
,
A.
Annaberdiyev
,
A.
Benali
,
M. C.
Bennett
,
E. J.
Landinez Borda
,
P.
Doak
,
H.
Hao
,
K. D.
Jordan
,
J. T.
Krogel
,
I.
Kylänpää
,
J.
Lee
,
Y.
Luo
,
F. D.
Malone
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
F. A.
Reboredo
,
B.
Rubenstein
,
K.
Saritas
,
S.
Upadhyay
,
G.
Wang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo
,”
J. Chem. Phys.
152
,
174105
(
2020
).
54.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, “
General atomic and molecular electronic structure system
,”
J. Comput. Chem.
14
,
1347
1363
(
1993
).
55.
M. S.
Gordon
and
M. W.
Schmidt
, “
Advances in electronic structure theory: GAMESS a decade later
,” in
Theory and Applications of Computational Chemistry
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
2005
), Chap. 41, pp.
1167
1189
.
56.
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L.
Galvez Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
, “
Recent developments in the general atomic and molecular electronic structure system
,”
J. Chem. Phys.
152
,
154102
(
2020
).
57.
Y.
Garniron
,
T.
Applencourt
,
K.
Gasperich
,
A.
Benali
,
A.
Ferté
,
J.
Paquier
,
B.
Pradines
,
R.
Assaraf
,
P.
Reinhardt
,
J.
Toulouse
,
P.
Barbaresco
,
N.
Renon
,
G.
David
,
J.-P.
Malrieu
,
M.
Véril
,
M.
Caffarel
,
P.-F.
Loos
,
E.
Giner
, and
A.
Scemama
, “
Quantum package 2.0: An open-source determinant-driven suite of programs
,”
J. Chem. Theory Comput.
15
,
3591
3609
(
2019
).
58.
J.
Hubbard
, “
Calculation of partition functions
,”
Phys. Rev. Lett.
3
,
77
(
1959
).
59.
J.
Lee
,
F. D.
Malone
, and
M. A.
Morales
, “
Utilizing essential symmetry breaking in auxiliary-field quantum Monte Carlo: Application to the spin gaps of the C36 fullerene and an iron porphyrin model complex
,”
J. Chem. Theory Comput.
16
,
3019
3027
(
2020
).
60.
B.
Rudshteyn
,
D.
Coskun
,
J. L.
Weber
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
,
R. A.
Friesner
, and
J.
Shee
, “
Predicting ligand-dissociation energies of 3d coordination complexes with auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
16
,
3041
3054
(
2020
).
61.
J.
Shee
,
B.
Rudshteyn
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
On achieving high accuracy in quantum chemical calculations of 3d transition metal-containing systems: A comparison of auxiliary-field quantum Monte Carlo with coupled cluster, density functional theory, and experiment for diatomic molecules
,”
J. Chem. Theory Comput.
15
,
2346
2358
(
2019
).
62.
M.
Kumar
,
J.
Shee
,
B.
Rudshteyn
,
D. R.
Reichman
,
R. A.
Friesner
,
C. E.
Miller
, and
J. S.
Francisco
, “
Multiple stable isoprene–ozone complexes reveal complex entrance channel dynamics in the isoprene + ozone reaction
,”
J. Am. Chem. Soc.
142
,
10806
(
2020
).
63.
H.
Hao
,
J.
Shee
,
S.
Upadhyay
,
C.
Ataca
,
K. D.
Jordan
, and
B. M.
Rubenstein
, “
Accurate predictions of electron binding energies of dipole-bound anions via quantum Monte Carlo methods
,”
J. Phys. Chem. Lett.
9
,
6185
6190
(
2018
).
64.
J.
Shee
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
Singlet–triplet energy gaps of organic biradicals and polyacenes with auxiliary-field quantum Monte Carlo
,”
J. Chem. Theory Comput.
15
,
4924
4932
(
2019
).
65.
J.
Shee
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
Phaseless auxiliary-field quantum Monte Carlo on graphical processing units
,”
J. Chem. Theory Comput.
14
,
4109
4121
(
2018
).
66.
W.
Purwanto
,
H.
Krakauer
,
Y.
Virgus
, and
S.
Zhang
, “
Assessing weak hydrogen binding on Ca+ centers: An accurate many-body study with large basis sets
,”
J. Chem. Phys.
135
,
164105
(
2011
).
67.
N. M.
O’boyle
,
A. L.
Tenderholt
, and
K. M.
Langner
, “
cclib: A library for package-independent computational chemistry algorithms
,”
J. Comput. Chem.
29
,
839
845
(
2008
).
68.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K. L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
69.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
70.
V. I.
Lebedev
and
D.
Laikov
, “
A quadrature formula for the sphere of the 131st algebraic order of accuracy
,” in
Doklady Mathematics
(
Pleiades Publishing, Ltd.
,
1999
), Vol. 59, pp.
477
481
.
71.
N.
Schlömer
,
N. R.
Papior
,
D.
Arnold
,
M.
Ancellin
, and
R.
Zetter
, nschloe/quadpy v0.15.2,
2020
.
72.
J. D.
Hunter
, “
Matplotlib: A 2D graphics environment
,”
Comput. Sci. Eng.
9
,
90
95
(
2007
).
73.
J.
Lee
,
D. W.
Small
, and
M.
Head-Gordon
, “
Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states
,”
J. Chem. Phys.
151
,
214103
(
2019
).
74.
J.
Noga
and
R. J.
Bartlett
, “
The full CCSDT model for molecular electronic structure
,”
J. Chem. Phys.
86
,
7041
7050
(
1987
).
75.
G. E.
Scuseria
and
H. F.
Schaefer
, “
A new implementation of the full CCSDT model for molecular electronic structure
,”
Chem. Phys. Lett.
152
,
382
386
(
1988
).
76.
J. D.
Watts
and
R. J.
Bartlett
, “
The coupled-cluster single, double, and triple excitation model for open-shell single reference functions
,”
J. Chem. Phys.
93
,
6104
6105
(
1990
).
77.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
, “
Coupled-cluster methods including noniterative corrections for quadruple excitations
,”
J. Chem. Phys.
123
,
054101
(
2005
).

Supplementary Material

You do not currently have access to this content.