Vibrational-electronic (vibronic) resonance and its possible role in energy and charge transfer have been experimentally and theoretically investigated in several photosynthetic proteins. Using a dimer modeled on a typical photosynthetic protein, we contrast the description of such excitons provided by an exact basis set description, as opposed to a basis set with reduced vibrational dimensionality. Using a reduced analytical description of the full Hamiltonian, we show that in the presence of vibrational excitation both on electronically excited as well as unexcited sites, constructive interference between such basis states causes vibronic coupling between excitons to become progressively stronger with increasing quanta of vibrational excitation. This effect leads to three distinguishing features of excitons coupled through a vibronic resonance, which are not captured in basis sets that restrict ground state vibrations: (1) the vibronic resonance criterion itself, (2) vibronically assisted perfect delocalization between sites even though purely electronic mixing between the sites is imperfect due to energetic disorder, and (3) the nuclear distortion accompanying vibronic excitons becoming increasingly larger for resonant vibronic coupling involving higher vibrational quanta. In terms of spectroscopically observable limitations of reduced basis set descriptions of vibronic resonance, several differences are seen in absorption and emission spectra but may be obscured on account of overwhelming line broadening. However, we show that several features such as vibronic exciton delocalization and vibrational distortions associated with electronic excitations, which ultimately dictate the excited state wavepacket motions and relaxation processes, are fundamentally not described by basis sets that restrict ground state vibrations.

1.
D. M.
Jonas
, “
Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn–Teller effect, and energy transfer
,”
Annu. Rev. Phys. Chem.
69
(
1
),
327
352
(
2018
).
2.
Y.-C.
Cheng
and
G. R.
Fleming
, “
Dynamics of light harvesting in photosynthesis
,”
Annu. Rev. Phys. Chem.
60
(
1
),
241
262
(
2009
).
3.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T.-K.
Ahn
,
T.
Mančal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
, “
Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems
,”
Nature
446
(
7137
),
782
786
(
2007
).
4.
G.
Panitchayangkoon
,
D.
Hayes
,
K. A.
Fransted
,
J. R.
Caram
,
E.
Harel
,
J.
Wen
,
R. E.
Blankenship
, and
G. S.
Engel
, “
Long-lived quantum coherence in photosynthetic complexes at physiological temperature
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
29
),
12766
12770
(
2010
).
5.
I. S.
Ryu
,
H.
Dong
, and
G. R.
Fleming
, “
Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center
,”
J. Phys. Chem. B
118
(
5
),
1381
1388
(
2014
).
6.
F. D.
Fuller
,
J.
Pan
,
A.
Gelzinis
,
V.
Butkus
,
S.
Seckin Senlik
,
D. E.
Wilcox
,
C. F.
Yocum
,
L.
Valkunas
,
D.
Abramavicius
, and
J. P.
Ogilvie
, “
Vibronic coherence in oxygenic photosynthesis
,”
Nat. Chem.
6
,
706
711
(
2014
).
7.
E.
Romero
,
R.
Augulis
,
V. I.
Novoderezhkin
,
M.
Ferretti
,
J.
Thieme
,
D.
Zigmantas
, and
R.
van Grondelle
, “
Quantum coherence in photosynthesis for efficient solar-energy conversion
,”
Nat. Phys.
10
,
676
682
(
2014
).
8.
E.
Thyrhaug
,
R.
Tempelaar
,
M. J. P.
Alcocer
,
K.
Žídek
,
D.
Bína
,
J.
Knoester
,
T. L. C.
Jansen
, and
D.
Zigmantas
, “
Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex
,”
Nat. Chem.
10
,
780
786
(
2018
).
9.
J. C.
Dean
,
T.
Mirkovic
,
Z. S. D.
Toa
,
D. G.
Oblinsky
, and
G. D.
Scholes
, “
Vibronic enhancement of algae light harvesting
,”
Chem
1
(
6
),
858
872
(
2014
).
10.
D.
Palec̆ek
,
P.
Edlund
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center
,”
Sci. Adv.
3
(
9
),
e1603141
(
2017
).
11.
M.
Maiuri
,
E. E.
Ostroumov
,
R. G.
Saer
,
R. E.
Blankenship
, and
G. D.
Scholes
, “
Coherent wavepackets in the Fenna–Matthews–Olson complex are robust to excitonic-structure perturbations caused by mutagenesis
,”
Nat. Chem.
10
(
2
),
177
183
(
2018
).
12.
J. M.
Womick
and
A. M.
Moran
, “
Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes
,”
J. Phys. Chem. B
115
,
1347
1356
(
2011
).
13.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
4
),
1203
1208
(
2013
).
14.
N.
Christensson
,
H. F.
Kauffmann
,
T.
Pullerits
, and
T.
Mančal
, “
Origin of long-lived coherences in light-harvesting complexes
,”
J. Phys. Chem. B
116
(
25
),
7449
7454
(
2012
).
15.
A. W.
Chin
,
J.
Prior
,
R.
Rosenbach
,
F.
Caycedo-Soler
,
S. F.
Huelga
, and
M. B.
Plenio
, “
The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes
,”
Nat. Phys.
9
,
113
(
2013
).
16.
P.
Nalbach
,
C. A.
Mujica-Martinez
, and
M.
Thorwart
, “
Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex
,”
Phys. Rev. E
91
,
022706
(
2015
).
17.
E. K.
Irish
,
R.
Gómez-Bombarelli
, and
B. W.
Lovett
, “
Vibration-assisted resonance in photosynthetic excitation-energy transfer
,”
Phys. Rev. A
90
,
012510
(
2014
).
18.
P.
Bhattacharyya
and
G. R.
Fleming
, “
The role of resonant nuclear modes in vibrationally assisted energy transport: The LHCII complex
,”
J. Chem. Phys.
153
(
4
),
044119
(
2020
).
19.
Y.
Sato
,
A.
Navarro Hernández
,
L. D.
Gillespie
, and
D.
Valete
, “
Effects of intramolecular vibrations on excitation energy transfer dynamics of the Fenna-Matthews-Olson complex
,”
Chem. Phys.
539
,
110940
(
2020
).
20.
G. D.
Scholes
,
G. R.
Fleming
,
L. X.
Chen
,
A.
Aspuru-Guzik
,
A.
Buchleitner
,
D. F.
Coker
,
G. S.
Engel
,
R.
van Grondelle
,
A.
Ishizaki
,
D. M.
Jonas
,
J. S.
Lundeen
,
J. K.
McCusker
,
S.
Mukamel
,
J. P.
Ogilvie
,
A.
Olaya-Castro
,
M. A.
Ratner
,
F. C.
Spano
,
K. B.
Whaley
, and
X.
Zhu
, “
Using coherence to enhance function in chemical and biophysical systems
,”
Nature
543
,
647
(
2017
).
21.
E. I.
Rashba
, “
Theory of vibronic spectra of molecular crystals
,”
J. Exp. Theor. Phys.
23
(
4
),
708
(
1966
).
22.
M. R.
Philpott
, “
Theory of the vibrational structure of molecular excitons. soluble ‘one-phonon’ models
,”
J. Chem. Phys.
51
(
6
),
2616
2624
(
1969
).
23.
J. S.
Briggs
and
A.
Herzenberg
, “
Sum rules for the vibronic spectra of helical polymers
,”
J. Phys. B: At. Mol. Phys.
3
(
12
),
1663
1676
(
1970
).
24.
W. T.
Simpson
and
D. L.
Peterson
, “
Coupling strength for resonance force transfer of electronic energy in van der Waals solids
,”
J. Chem. Phys.
26
(
3
),
588
593
(
1957
).
25.
E.
McRae
, “
Molecular vibrations in the exciton theory for molecular aggregates. IV. Excited states of weakly-coupled systems
,”
Aust. J. Chem.
16
(
3
),
295
314
(
1963
).
26.
W.
Siebrand
, “
Vibrational structure of electronic states of molecular aggregates. I. A variation approach to dimeric systems
,”
J. Chem. Phys.
40
(
8
),
2223
2230
(
1964
).
27.
T.
Holstein
, “
Studies of polaron motion: Part I. The molecular-crystal model
,”
Ann. Phys.
8
(
3
),
325
342
(
1959
).
28.
W. J. D.
Beenken
,
M.
Dahlbom
,
P.
Kjellberg
, and
T.
Pullerits
, “
Potential surfaces and delocalization of excitons in dimers
,”
J. Chem. Phys.
117
(
12
),
5810
5820
(
2002
).
29.
V.
May
and
O.
Kuhn
,
Charge and Energy Transfer Dynamics in Molecular Systems Third Edition
(
John Wiley & Sons, Ltd.
,
2011
).
30.
M.
Schröter
,
S. D.
Ivanov
,
J.
Schulze
,
S. P.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
, “
Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates
,”
Phys. Rep.
567
,
1
78
(
2015
).
31.
G.
Tao
and
W. H.
Miller
, “
Semiclassical description of electronic excitation population transfer in a model photosynthetic system
,”
J. Phys. Chem. Lett.
1
(
6
),
891
894
(
2010
).
32.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
(
1
),
73
78
(
1990
).
33.
A.
Bose
and
N.
Makri
, “
All-mode quantum–classical path integral simulation of bacteriochlorophyll dimer exciton-vibration dynamics
,”
J. Phys. Chem. B
124
(
24
),
5028
5038
(
2020
).
34.
J.
Roden
,
A.
Eisfeld
,
W.
Wolff
, and
W. T.
Strunz
, “
Influence of complex exciton-phonon coupling on optical absorption and energy transfer of quantum aggregates
,”
Phys. Rev. Lett.
103
,
058301
(
2009
).
35.
G.
Ritschel
,
D.
Suess
,
S.
Möbius
,
W. T.
Strunz
, and
A.
Eisfeld
, “
Non-Markovian quantum state diffusion for temperature-dependent linear spectra of light harvesting aggregates
,”
J. Chem. Phys.
142
(
3
),
034115
(
2015
).
36.
Y.
Tanimura
, “
Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath
,”
Phys. Rev. A
41
,
6676
6687
(
1990
).
37.
A.
Ishizaki
and
G. R.
Fleming
, “
Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach
,”
J. Chem. Phys.
130
(
23
),
234111
(
2009
).
38.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
, “
Optical line shapes of molecular aggregates: Hierarchical equations of motion method
,”
J. Chem. Phys.
131
(
9
),
094502
(
2009
).
39.
C.
Kreisbeck
,
T.
Kramer
,
M.
Rodríguez
, and
B.
Hein
, “
High-performance solution of hierarchical equations of motion for studying energy transfer in light-harvesting complexes
,”
J. Chem. Theory Comput.
7
(
7
),
2166
2174
(
2011
).
40.
M. R.
Philpott
, “
Weak-coupling theory of the vibrational structure of molecular exciton states
,”
J. Chem. Phys.
47
(
8
),
2534
2544
(
1967
).
41.
J. S.
Briggs
and
A.
Herzenberg
, “
Bandshapes in polymer spectra
,”
Mol. Phys.
21
(
5
),
865
879
(
1971
).
42.
J. S.
Briggs
and
A.
Herzenberg
, “
The absorption bandshape of a molecular dimer
,”
Mol. Phys.
23
(
1
),
203
208
(
1972
).
43.
A.
Eisfeld
,
L.
Braun
,
W. T.
Strunz
,
J. S.
Briggs
,
J.
Beck
, and
V.
Engel
, “
Vibronic energies and spectra of molecular dimers
,”
J. Chem. Phys.
122
(
13
),
134103
(
2005
).
44.
J.
Roden
,
A.
Eisfeld
, and
J. S.
Briggs
, “
The j- and h-bands of dye aggregate spectra: Analysis of the coherent exciton scattering (CES) approximation
,”
Chem. Phys.
352
(
1
),
258
266
(
2008
).
45.
J.
Schulze
,
M.
Torbjörnsson
,
O.
Kühn
, and
T.
Pullerits
, “
Exciton coupling induces vibronic hyperchromism in light-harvesting complexes
,”
New J. Phys.
16
(
4
),
045010
(
2014
).
46.
C.
Friedl
,
T.
Renger
,
H. V.
Berlepsch
,
K.
Ludwig
,
M.
Schmidt am Busch
, and
J.
Megow
, “
Structure prediction of self-assembled dye aggregates from cryogenic transmission electron microscopy, molecular mechanics, and theory of optical spectra
,”
J. Phys. Chem. C
120
(
34
),
19416
19433
(
2016
).
47.
N. J.
Hestand
and
F. C.
Spano
, “
Expanded theory of h- and j-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer
,”
Chem. Rev.
118
(
15
),
7069
7163
(
2018
).
48.
M.
Andrzejak
and
P.
Petelenz
, “
Vibronic coupling in dimer—A convenient approximation revisited
,”
Chem. Phys.
335
(
2
),
155
163
(
2007
).
49.
F. C.
Spano
, “
The fundamental photophysics of conjugated oligomer herringbone aggregates
,”
J. Chem. Phys.
118
(
2
),
981
994
(
2003
).
50.
F. C.
Spano
, “
Absorption in regio-regular poly(3-hexyl)thiophene thin films: Fermi resonances, interband coupling and disorder
,”
Chem. Phys.
325
(
1
),
22
35
(
2006
), Electronic Processes in Organic Solids.
51.
A.
Stradomska
and
P.
Petelenz
, “
Intermediate vibronic coupling in sexithiophene single crystals. II. Three-particle contributions
,”
J. Chem. Phys.
131
(
4
),
044507
(
2009
).
52.
M. T. W.
Milder
,
B.
Brüggemann
,
R.
van Grondelle
, and
J. L.
Herek
, “
Revisiting the optical properties of the FMO protein
,”
Photosynth. Res.
104
(
2
),
257
274
(
2010
).
53.
S. I. E.
Vulto
,
M. A.
de Baat
,
R. J. W.
Louwe
,
H. P.
Permentier
,
T.
Neef
,
M.
Miller
,
H.
van Amerongen
, and
T. J.
Aartsma
, “
Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chlorobium tepidum at 6 K
,”
J. Phys. Chem. B
102
(
47
),
9577
9582
(
1998
).
54.
J. R.
Diers
and
D. F.
Bocian
, “
Qy-excitation resonance Raman spectra of bacteriochlorophyll observed under fluorescence-free conditions. Implications for cofactor structure in photosynthetic proteins
,”
J. Am. Chem. Soc.
117
(
24
),
6629
6630
(
1995
).
55.
M.
Rätsep
,
Z.-L.
Cai
,
J. R.
Reimers
, and
A.
Freiberg
, “
Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a
,”
J. Chem. Phys.
134
(
2
),
024506
(
2011
).
56.
M.
Wendling
,
T.
Pullerits
,
M. A.
Przyjalgowski
,
S. I. E.
Vulto
,
T. J.
Aartsma
,
R.
van Grondelle
, and
H.
van Amerongen
, “
Electron-vibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements
,”
J. Phys. Chem. B
104
(
24
),
5825
5831
(
2000
).
57.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer
,”
J. Chem. Phys.
147
(
15
),
154308
(
2017
).
58.
T.
Förster
, in
Modern Quantum Chemistry
, edited by
O.
Sinanoglŭ
(
Academic Press, New York
,
1996
).
59.
W. K.
Peters
,
V.
Tiwari
, and
D. M.
Jonas
, “
Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer
,”
J. Chem. Phys.
147
(
19
),
194306
(
2017
).
60.
J.
Roden
,
G.
Schulz
,
A.
Eisfeld
, and
J.
Briggs
, “
Electronic energy transfer on a vibronically coupled quantum aggregate
,”
J. Chem. Phys.
131
(
4
),
044909
(
2009
).
61.
L. S.
Cederbaum
,
E.
Gindensperger
, and
I.
Burghardt
, “
Short-time dynamics through conical intersections in macrosystems
,”
Phys. Rev. Lett.
94
,
113003
(
2005
).
62.
V.
Tiwari
and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer
,”
J. Chem. Phys.
148
(
8
),
084308
(
2018
).
63.
M.
Hohenadler
and
W.
von der Linden
,
Lang-Firsov Approaches to Polaron Physics: From Variational Methods to Unbiased Quantum Monte Carlo Simulations
(
Springer Netherlands
,
Dordrecht
,
2007
), pp.
463
502
.
64.
A. A.
Bakulin
,
S. E.
Morgan
,
T. B.
Kehoe
,
M. W. B.
Wilson
,
A. W.
Chin
,
D.
Zigmantas
,
D.
Egorova
, and
A.
Rao
, “
Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy
,”
Nat. Chem.
8
,
16
23
(
2016
).
65.
A.
De Sio
and
C.
Lienau
, “
Vibronic coupling in organic semiconductors for photovoltaics
,”
Phys. Chem. Chem. Phys.
19
,
18813
18830
(
2017
).
66.
Y.
Fujihashi
,
G. R.
Fleming
, and
A.
Ishizaki
, “
Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra
,”
J. Chem. Phys.
142
(
21
),
212403
(
2015
).
67.
W.
Heitler
and
F.
London
,
Interaction Between Neutral Atoms and Homopolar Binding According to Quantum Mechanics
(
World Scientific, Singapore
,
2000
), pp.
140
155
.
68.
K. A.
Kitney-Hayes
,
A. A.
Ferro
,
V.
Tiwari
, and
D. M.
Jonas
, “
Two-dimensional Fourier transform electronic spectroscopy at a conical intersection
,”
J. Chem. Phys.
140
(
12
),
124312
(
2014
).
69.
M.
Anzola
,
F.
Di Maiolo
, and
A.
Painelli
, “
Optical spectra of molecular aggregates and crystals: Testing approximation schemes
,”
Phys. Chem. Chem. Phys.
21
,
19816
19824
(
2019
).
70.
C.
Olbrich
,
T. L. C.
Jansen
,
J.
Liebers
,
M.
Aghtar
,
J.
Strümpfer
,
K.
Schulten
,
J.
Knoester
, and
U.
Kleinekathöfer
, “
From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex
,”
J. Phys. Chem. B
115
(
26
),
8609
8621
(
2011
).
71.
M.
Rätsep
and
A.
Freiberg
, “
Electron–phonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing
,” in
Proceedings of the Ninth International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications
[
J. Lumin.
127
(
1
),
251
259
(
2007
)].
72.
F. C.
Spano
,
J.
Clark
,
C.
Silva
, and
R. H.
Friend
, “
Determining exciton coherence from the photoluminescence spectral line shape in poly(3-hexylthiophene) thin films
,”
J. Chem. Phys.
130
(
7
),
074904
(
2009
).
73.
F. C.
Spano
and
H.
Yamagata
, “
Vibronic coupling in j-aggregates and beyond: A direct means of determining the exciton coherence length from the photoluminescence spectrum
,”
J. Phys. Chem. B
115
(
18
),
5133
5143
(
2011
).
74.
D. A.
Long
, “
The Raman effect—a unified treatment of the theory of Raman scattering by molecules
” (
John Wiley & Sons, Ltd.
,
2002
).
75.
H.
van Amerongen
,
R.
van Grondelle
, and
L.
Valkunas
,
Photosynthetic Excitons
(
World Scientific
,
2000
).
76.
K.
Song
,
S.
Bai
, and
Q.
Shi
, “
A time domain two-particle approximation to calculate the absorption and circular dichroism line shapes of molecular aggregates
,”
J. Chem. Phys.
143
(
6
),
064109
(
2015
).
77.
P.-P.
Zhang
,
C. D. B.
Bentley
, and
A.
Eisfeld
, “
Flexible scheme to truncate the hierarchy of pure states
,”
J. Chem. Phys.
148
(
13
),
134103
(
2018
).
78.
R. J.
Bell
and
P.
Dean
, “
Atomic vibrations in vitreous silica
,”
Discuss. Faraday Soc.
50
,
55
61
(
1970
).
79.
D. J.
Thouless
, “
Electrons in disordered systems and the theory of localization
,”
Phys. Rep.
13
(
3
),
93
142
(
1974
).
80.
O.
Kühn
and
V.
Sundström
, “
Pump–probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach
,”
J. Chem. Phys.
107
(
11
),
4154
4164
(
1997
).
81.
M.
Hoffmann
and
Z. G.
Soos
, “
Optical absorption spectra of the Holstein molecular crystal for weak and intermediate electronic coupling
,”
Phys. Rev. B
66
,
024305
(
2002
).
82.
J. D.
Biggs
and
J. A.
Cina
, “
Using wave-packet interferometry to monitor the external vibrational control of electronic excitation transfer
,”
J. Chem. Phys.
131
(
22
),
224101
(
2009
).

Supplementary Material

You do not currently have access to this content.