The recently developed real-time nuclear–electronic orbital (RT-NEO) approach provides an elegant framework for treating electrons and selected nuclei, typically protons, quantum mechanically in nonequilibrium dynamical processes. However, the RT-NEO approach neglects the motion of the other nuclei, preventing a complete description of the coupled nuclear–electronic dynamics and spectroscopy. In this work, the dynamical interactions between the other nuclei and the electron–proton subsystem are described with the mixed quantum–classical Ehrenfest dynamics method. The NEO-Ehrenfest approach propagates the electrons and quantum protons in a time-dependent variational framework, while the remaining nuclei move classically on the corresponding average electron–proton vibronic surface. This approach includes the non-Born–Oppenheimer effects between the electrons and the quantum protons with RT-NEO and between the classical nuclei and the electron–proton subsystem with Ehrenfest dynamics. Spectral features for vibrational modes involving both quantum and classical nuclei are resolved from the time-dependent dipole moments. This work shows that the NEO-Ehrenfest method is a powerful tool to study dynamical processes with coupled electronic and nuclear degrees of freedom.

1.
S. M.
Collins
,
D. M.
Kepaptsoglou
,
J.
Hou
,
C. W.
Ashling
,
G.
Radtke
,
T. D.
Bennett
,
P. A.
Midgley
, and
Q. M.
Ramasse
, “
Functional group mapping by electron beam vibrational spectroscopy from nanoscale volumes
,”
Nano Lett.
20
,
1272
1279
(
2020
).
2.
A.
Petrone
,
D. B.
Lingerfelt
,
D. B.
Williams-Young
, and
X.
Li
, “
Ab initio transient vibrational spectral analysis
,”
J. Phys. Chem. Lett.
7
,
4501
4508
(
2016
).
3.
J.
Meisner
and
J.
Kästner
, “
Atom tunneling in chemistry
,”
Angew. Chem., Int. Ed.
55
,
5400
5413
(
2016
).
4.
M. H. V.
Huynh
and
T. J.
Meyer
, “
Proton-coupled electron transfer
,”
Chem. Rev.
107
,
5004
5064
(
2007
).
5.
D. R.
Weinberg
,
C. J.
Gagliardi
,
J. F.
Hull
,
C. F.
Murphy
,
C. A.
Kent
,
B. C.
Westlake
,
A.
Paul
,
D. H.
Ess
,
D. G.
McCafferty
, and
T. J.
Meyer
, “
Proton-coupled electron transfer
,”
Chem. Rev.
112
,
4016
4093
(
2012
).
6.
S.
Hammes-Schiffer
, “
Proton-coupled electron transfer: Moving together and charging forward
,”
J. Am. Chem. Soc.
137
,
8860
8871
(
2015
).
7.
M. J.
Vetticatt
and
D. A.
Singleton
, “
Isotope effects and heavy-atom tunneling in the roush allylboration of aldehydes
,”
Org. Lett.
14
,
2370
2373
(
2012
).
8.
J.-L.
Chen
and
W.-P.
Hu
, “
Theoretical prediction on the thermal stability of cyclic ozone and strong oxygen tunneling
,”
J. Am. Chem. Soc.
133
,
16045
16053
(
2011
).
9.
F.
Agostini
and
B. F. E.
Curchod
, “
Different flavors of nonadiabatic molecular dynamics
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1417
(
2019
).
10.
M. H.
Beck
,
A.
Jackle
,
G. A.
Worth
, and
H.-D.
Meyer
, “
The multiconfiguration time-dependent hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets
,”
Phys. Rev.
324
,
1
105
(
2000
).
11.
G. A.
Worth
, “
Quantics: A general purpose package for quantum molecular dynamics simulations
,”
Comput. Phys. Commun.
248
,
107040
(
2020
).
12.
G. W.
Richings
,
I.
Polyak
,
K. E.
Spinlove
,
G. A.
Worth
,
I.
Burghardt
, and
B.
Lasorne
, “
Quantum dynamics simulation using Gaussian wavepackets: The vMCG method
,”
Int. Rev. Phys. Chem.
34
,
269
308
(
2015
).
13.
T. J.
Martinez
,
M.
Ben-Nun
, and
R. D.
Levine
, “
Multi-electronic-state molecular dynamics: A wave function approach with applications
,”
J. Phys. Chem.
100
,
7884
7895
(
1996
).
14.
B. F. E.
Curchod
and
T. J.
Martínez
, “
Ab initio nonadiabatic quantum molecular dynamics
,”
Chem. Rev.
118
,
3305
3336
(
2018
).
15.
A.
Abedi
,
N. T.
Maitra
, and
E. K. U.
Gross
, “
Exact factorization of the time-dependent electron-nuclear wave function
,”
Phys. Rev. Lett.
105
,
123002
(
2010
).
16.
A.
Abedi
,
N. T.
Maitra
, and
E. K. U.
Gross
, “
Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction
,”
J. Chem. Phys.
137
,
22A530
(
2012
).
17.
S. P.
Webb
,
T.
Iordanov
, and
S.
Hammes-Schiffer
, “
Multiconfigurational nuclear-electronic orbital approach: Incorporation of nuclear quantum effects in electronic structure calculations
,”
J. Chem. Phys.
117
,
4106
(
2002
).
18.
F.
Pavošević
,
T.
Culpitt
, and
S.
Hammes-Schiffer
, “
Multicomponent quantum chemistry: Integrating electronic and nuclear quantum effects via the nuclear-electronic orbital method
,”
Chem. Rev.
120
,
4222
4253
(
2020
).
19.
M. V.
Pak
and
S.
Hammes-Schiffer
, “
Electron–proton correlation for hydrogen tunneling systems
,”
Phys. Rev. Lett.
92
,
103002
(
2004
).
20.
A.
Chakraborty
,
M. V.
Pak
, and
S.
Hammes-Schiffer
, “
Development of electron-proton density functionals for multicomponent density functional theory
,”
Phys. Rev. Lett.
101
,
153001
(
2008
).
21.
Y.
Yang
,
K. R.
Brorsen
,
T.
Culpitt
,
M. V.
Pak
, and
S.
Hammes-Schiffer
, “
Development of a practical multicomponent density functional for electron–proton correlation to produce accurate proton densities
,”
J. Chem. Phys.
147
,
114113
(
2017
).
22.
K. R.
Brorsen
,
Y.
Yang
, and
S.
Hammes-Schiffer
, “
Multicomponent density functional theory: Impact of nuclear quantum effects on proton affinities and geometries
,”
J. Phys. Chem. Lett.
8
,
3488
3493
(
2017
).
23.
Z.
Tao
,
Y.
Yang
, and
S.
Hammes-Schiffer
, “
Multicomponent density functional theory: Including the density gradient in the electron-proton correlation functional for hydrogen and deuterium
,”
J. Chem. Phys.
151
,
124102
(
2019
).
24.
F.
Pavošević
,
B. J. G.
Rousseau
, and
S.
Hammes-Schiffer
, “
Multicomponent orbital-optimized perturbation theory methods: Approaching coupled cluster accuracy at lower cost
,”
J. Phys. Chem. Lett.
11
,
1578
1583
(
2020
).
25.
F.
Pavošević
,
T.
Culpitt
, and
S.
Hammes-Schiffer
, “
Multicomponent coupled cluster singles and doubles theory within the nuclear-electronic orbital framework
,”
J. Chem. Theory Comput.
15
,
338
347
(
2019
).
26.
F.
Pavošević
and
S.
Hammes-Schiffer
, “
Multicomponent equation-of-motion coupled cluster singles and doubles: Theory and calculation of excitation energies for positronium hydride
,”
J. Chem. Phys.
150
,
161102
(
2019
).
27.
F.
Pavošević
and
S.
Hammes-Schiffer
, “
Multicomponent coupled cluster singles and doubles and brueckner doubles methods: Proton densities and energies
,”
J. Chem. Phys.
151
,
074104
(
2019
).
28.
Y.
Yang
,
T.
Culpitt
, and
S.
Hammes-Schiffer
, “
Multicomponent time-dependent density functional theory: Proton and electron excitation energies
,”
J. Phys. Chem. Lett.
9
,
1765
1770
(
2018
).
29.
F.
Pavošević
,
Z.
Tao
,
T.
Culpitt
,
L.
Zhao
,
X.
Li
, and
S.
Hammes-Schiffer
, “
Frenquency and time domain nuclear-electronic orbital equation-of-motion coupled cluster methods: Combination bands and electronic-protonic double excitations
,”
J. Phys. Chem. Lett.
11
,
6435
6442
(
2020
).
30.
T.
Culpitt
,
Y.
Yang
,
F.
Pavošević
,
Z.
Tao
, and
S.
Hammes-Schiffer
, “
Enhancing the applicability of multicomponent time-dependent density functional theory
,”
J. Chem. Phys.
150
,
201101
(
2019
).
31.
L.
Zhao
,
Z.
Tao
,
F.
Pavošević
,
A.
Wildman
,
S.
Hammes-Schiffer
, and
X.
Li
, “
Real-time time-dependent nuclear-electronic orbital approach: Dynamics beyond the Born–Oppenheimer approximation
,”
J. Phys. Chem. Lett.
11
,
4052
4058
(
2020
).
32.
X.
Li
,
N.
Govind
,
C.
Isborn
,
A. E.
DePrince
, and
K.
Lopata
, “
Real-time time-dependent electronic structure theory
,”
Chem. Rev.
120
,
9951
9993
(
2020
).
33.
O.
Butriy
,
H.
Ebadi
,
P. L.
de Boeij
,
R.
van Leeuwen
, and
E. K. U.
Gross
, “
Multicomponent density-functional theory for time-dependent systems
,”
Phys. Rev. A
76
,
052514
(
2007
).
34.
K.
Burke
,
J.
Werschnik
, and
E. K. U.
Gross
, “
Time-dependent density functional theory: Past, present, and future
,”
J. Chem. Phys.
123
,
062206
(
2005
).
35.
M.
Higashi
and
S.
Saito
, “
Direct simulation of excited-state intramolecular proton transfer and vibrational coherence of 10-hydroxybenzo[h]quinoline in solution
,”
J. Phys. Chem. Lett.
2
,
2366
2371
(
2011
).
36.
J. P.
Layfield
and
S.
Hammes-Schiffer
, “
Hydrogen tunneling in enzymes and biomimetic models
,”
Chem. Rev.
114
,
3466
3494
(
2014
).
37.
X.
Li
,
J. C.
Tully
,
H. B.
Schlegel
, and
M. J.
Frisch
, “
Ab initio ehrenfest dynamics
,”
J. Chem. Phys.
123
,
084106
(
2005
).
38.
C. M.
Isborn
,
X.
Li
, and
J. C.
Tully
, “
Tddft ehrenfest dynamics: Collisions between atomic oxygen and graphite clusters
,”
J. Chem. Phys.
126
,
134307
(
2007
).
39.
F.
Ding
,
J. J.
Goings
,
H.
Liu
,
D. B.
Lingerfelt
, and
X.
Li
, “
Ab initio two-component ehrenfest dynamics
,”
J. Chem. Phys.
143
,
114105
(
2015
).
40.
J. C.
Tully
, “
Mixed quantum-classical dynamics
,”
Faraday Discuss.
110
,
407
419
(
1998
).
41.
S. S.
Iyengar
,
H. B.
Schlegel
, and
G. A.
Voth
, “
Atom-centered density matrix propagation (ADMP): Generalizations using bohmian mechanics
,”
J. Phys. Chem. A
107
,
7269
7277
(
2003
).
42.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
 III
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
USA
,
1994
).
43.
D. B.
Williams-Young
,
A.
Petrone
,
S.
Sun
,
T. F.
Stetina
,
P.
Lestrange
,
C. E.
Hoyer
,
D. R.
Nascimento
,
L.
Koulias
,
A.
Wildman
,
J.
Kasper
,
J. J.
Goings
,
F.
Ding
,
A. E.
DePrince
 III
,
E. F.
Valeev
, and
X.
Li
, “
The chronus quantum (ChronusQ) software package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1436
(
2019
).
44.
Y.
Yang
,
P. E.
Schneider
,
T.
Culpitt
,
F.
Pavošević
, and
S.
Hammes-Schiffer
, “
Molecular vibrational frequencies within the nuclear-electronic orbital framework
,”
J. Phys. Chem. Lett.
10
,
1167
1172
(
2019
).
45.
V.
Barone
, “
Anharmonic vibrational properties by a fully automated second-order perturbative approach
,”
J. Chem. Phys.
122
,
014108
(
2005
).
46.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
 et al., “
Advances in molecular quantum chemistry contained in the Q-chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
47.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1988
).
48.
Q.
Yu
,
F.
Pavošević
, and
S.
Hammes-Schiffer
, “
Development of nuclear basis sets for multicomponent quantum chemistry methods
,”
J. Chem. Phys.
152
,
244123
(
2020
).
49.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
50.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
51.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
52.
T.
Culpitt
,
Y.
Yang
,
P. E.
Schneider
,
F.
Pavošević
, and
S.
Hammes-Schiffer
, “
Molecular vibrational frequencies with multiple quantum protons within the nuclear-electronic orbital framework
,”
J. Chem. Theory Comput.
15
,
6840
6849
(
2019
).

Supplementary Material

You do not currently have access to this content.