We propose a general formalism for polarizable embedding models that can be applied to either continuum or atomistic polarizable models. After deriving such a formalism for both variational and non-variational models, we address the problem of coupling two polarizable models among themselves and to a quantum mechanical (QM) description in the spirit of multiscale quantum chemistry. We discuss general, model-independent coupling hypotheses and derive coupled polarization equations for all combinations of variational and non-variational models and discuss the embedding contributions to the analytical derivatives of the energy, with a particular focus on the elements of the Fock or Kohn–Sham matrix. We apply the general formalism to the derivation of the working equations for a three-layered, fully polarizable QM/MM/continuum strategy using the non-variational atomic multipole optimized energetics for biomolecular applications polarizable force field and the domain decomposition conductor-like screening model.

1.
A.
Warshel
and
M.
Levitt
, “
Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
,”
J. Mol. Biol.
103
,
227
249
(
1976
).
2.
J.-L.
Rivail
and
D.
Rinaldi
, “
A quantum chemical approach to dielectric solvent effects in molecular liquids
,”
Chem. Phys.
18
,
233
242
(
1976
).
3.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
, “
Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects
,”
Chem. Phys.
55
,
117
129
(
1981
).
4.
C. J.
Cramer
and
D. G.
Truhlar
, “
Implicit solvation models: Equilibria, structure, spectra, and dynamics
,”
Chem. Rev.
99
,
2161
2200
(
1999
).
5.
M.
Orozco
and
F. J.
Luque
, “
Theoretical methods for the description of the solvent effect in biomolecular systems
,”
Chem. Rev.
100
,
4187
4226
(
2000
).
6.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3093
(
2005
).
7.
A.
Klamt
, “
The COSMO and COSMO-RS solvation models
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
699
(
2011
).
8.
J.
Gao
, “
Hybrid quantum and molecular mechanical simulations: An alternative avenue to solvent effects in organic chemistry
,”
Acc. Chem. Res.
29
,
298
305
(
1996
).
9.
H.
Lin
and
D. G.
Truhlar
, “
QM/MM: What have we learned, where are we, and where do we go from here?
,”
Theor. Chem. Acc.
117
,
185
199
(
2006
).
10.
H. M.
Senn
and
W.
Thiel
, “
QM/MM methods for biomolecular systems
,”
Angew. Chem., Int. Ed.
48
,
1198
1229
(
2009
).
11.
M. W.
van der Kamp
and
A. J.
Mulholland
, “
Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology
,”
Biochemistry
52
,
2708
2728
(
2013
).
12.
C.
Cappelli
, “
Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute–solvent systems
,”
Int. J. Quantum Chem.
116
,
1532
1542
(
2016
).
13.
F.
Lipparini
and
B.
Mennucci
, “
Perspective: Polarizable continuum models for quantum-mechanical descriptions
,”
J. Chem. Phys.
144
,
160901
(
2016
).
14.
A. K.
Rappe
and
W. A.
Goddard
 III
, “
Charge equilibration for molecular dynamics simulations
,”
J. Phys. Chem.
95
,
3358
3363
(
1991
).
15.
P. P.
Poier
and
F.
Jensen
, “
Describing molecular polarizability by a bond capacity model
,”
J. Chem. Theory Comput.
15
,
3093
3107
(
2019
).
16.
T.
Giovannini
,
A.
Puglisi
,
M.
Ambrosetti
, and
C.
Cappelli
, “
Polarizable QM/MM approach with fluctuating charges and fluctuating dipoles: The QM/FQFμ model
,”
J. Chem. Theory Comput.
15
,
2233
2245
(
2019
).
17.
J. M. H.
Olsen
and
J.
Kongsted
, “
Molecular properties through polarizable embedding
,” in
Advances in Quantum Chemistry
, edited by
J. R.
Sabin
and
E.
Brändas
(
Elsevier
,
2011
), pp.
107
143
.
18.
X.
Wu
,
J.-M.
Teuler
,
F.
Cailliez
,
C.
Clavaguéra
,
D. R.
Salahub
, and
A.
de la Lande
, “
Simulating electron dynamics in polarizable environments
,”
J. Chem. Theory Comput.
13
,
3985
4002
(
2017
).
19.
J.
Dziedzic
,
Y.
Mao
,
Y.
Shao
,
J.
Ponder
,
T.
Head-Gordon
,
M.
Head-Gordon
, and
C.-K.
Skylaris
, “
TINKTEP: A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field
,”
J. Chem. Phys.
145
,
124106
(
2016
).
20.
J.
Gao
, “
Energy components of aqueous solution: Insight from hybrid QM/MM simulations using a polarizable solvent model
,”
J. Comput. Chem.
18
,
1061
1071
(
1997
).
21.
M. A.
Thompson
and
G. K.
Schenter
, “
Excited states of the bacteriochlorophyll b dimer of rhodopseudomonas viridis: A QM/MM study of the photosynthetic reaction center that includes MM polarization
,”
J. Phys. Chem.
99
,
6374
6386
(
1995
).
22.
F.
Lipparini
,
G.
Scalmani
,
B.
Mennucci
,
E.
Cancès
,
M.
Caricato
, and
M. J.
Frisch
, “
A variational formulation of the polarizable continuum model
,”
J. Chem. Phys.
133
,
014106
(
2010
).
23.
N. A.
Baker
, “
Poisson–Boltzmann methods for biomolecular electrostatics
,” in
Numerical Computer Methods, Part D, Methods in Enzymology
(
Academic Press
,
2004
), Vol. 383, pp.
94
118
.
24.
A. H.
Steindal
,
K.
Ruud
,
L.
Frediani
,
K.
Aidas
, and
J.
Kongsted
, “
Excitation energies in solution: The fully polarizable QM/MM/PCM method
,”
J. Phys. Chem. B
115
,
3027
3037
(
2011
).
25.
F.
Lipparini
,
C.
Cappelli
,
G.
Scalmani
,
N.
De Mitri
, and
V.
Barone
, “
Analytical first and second derivatives for a fully polarizable QM/classical Hamiltonian
,”
J. Chem. Theory Comput.
8
,
4270
4278
(
2012
).
26.
F.
Lipparini
,
C.
Cappelli
, and
V.
Barone
, “
Linear response theory and electronic transition energies for a fully polarizable QM/Classical Hamiltonian
,”
J. Chem. Theory Comput.
8
,
4153
4165
(
2012
).
27.
S.
Caprasecca
,
C.
Curutchet
, and
B.
Mennucci
, “
Toward a unified modeling of environment and bridge-mediated contributions to electronic energy transfer: A fully polarizable QM/MM/PCM approach
,”
J. Chem. Theory Comput.
8
,
4462
4473
(
2012
).
28.
E.
Boulanger
and
W.
Thiel
, “
Solvent boundary potentials for hybrid QM/MM computations using classical drude oscillators: A fully polarizable model
,”
J. Chem. Theory Comput.
8
,
4527
4538
(
2012
).
29.
F.
Lipparini
and
V.
Barone
, “
Polarizable force fields and polarizable continuum model: A fluctuating charges/PCM approach. 1. Theory and implementation
,”
J. Chem. Theory Comput.
7
,
3711
3724
(
2011
).
30.
F.
Lipparini
,
L.
Lagardère
,
C.
Raynaud
,
B.
Stamm
,
E.
Cancès
,
B.
Mennucci
,
M.
Schnieders
,
P.
Ren
,
Y.
Maday
, and
J.-P.
Piquemal
, “
Polarizable molecular dynamics in a polarizable continuum solvent
,”
J. Chem. Theory Comput.
11
,
623
634
(
2015
).
31.
P. P.
Poier
and
F.
Jensen
, “
Polarizable charges in a generalized Born reaction potential
,”
J. Chem. Phys.
153
,
024111
(
2020
).
32.
P. P.
Poier
and
F.
Jensen
, “
Including implicit solvation in the bond capacity polarization model
,”
J. Chem. Phys.
151
,
114118
(
2019
).
33.
M.
Caricato
,
G.
Scalmani
, and
M. J.
Frisch
, “
A Lagrangian formulation for continuum models
,” in
Continuum Solvation Models in Chemical Physics
, edited by
B.
Mennucci
and
R.
Cammi
(
Wiley
,
New York
,
2007
), Chap. 1.4, pp.
64
81
.
34.
F.
Lipparini
,
G.
Scalmani
,
B.
Mennucci
, and
M. J.
Frisch
, “
Self-consistent field and polarizable continuum model: A new strategy of solution for the coupled equations
,”
J. Chem. Theory Comput.
7
,
610
617
(
2011
).
35.
J. W.
Ponder
,
C.
Wu
,
P.
Ren
,
V. S.
Pande
,
J. D.
Chodera
,
M. J.
Schnieders
,
I.
Haque
,
D. L.
Mobley
,
D. S.
Lambrecht
,
R. A.
DiStasio
,
M.
Head-Gordon
,
G. N. I.
Clark
,
M. E.
Johnson
, and
T.
Head-Gordon
, “
Current status of the AMOEBA polarizable force field
,”
J. Phys. Chem. B
114
,
2549
2564
(
2010
).
36.
E.
Cancès
,
Y.
Maday
, and
B.
Stamm
, “
Domain decomposition for implicit solvation models
,”
J. Chem. Phys.
139
,
054111
(
2013
).
37.
P. P.
Poier
,
L.
Lagardère
,
J.-P.
Piquemal
, and
F.
Jensen
, “
Molecular dynamics using nonvariational polarizable force fields: Theory, periodic boundary conditions implementation, and application to the bond capacity model
,”
J. Chem. Theory Comput.
15
,
6213
6224
(
2019
).
38.
A. W.
Lange
and
J. M.
Herbert
, “
Symmetric versus asymmetric discretization of the integral equations in polarizable continuum solvation models
,”
Chem. Phys. Lett.
509
,
77
87
(
2011
).
39.
G.
Scalmani
and
M. J.
Frisch
, “
Continuous surface charge polarizable continuum models of solvation. I. General formalism
,”
J. Chem. Phys.
132
,
114110
(
2010
).
40.
A. W.
Lange
and
J. M.
Herbert
, “
A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: The switching/Gaussian approach
,”
J. Chem. Phys.
133
,
244111
(
2010
).
41.
B.
Stamm
,
L.
Lagardère
,
G.
Scalmani
,
P.
Gatto
,
E.
Cancès
,
J.-P.
Piquemal
,
Y.
Maday
,
B.
Mennucci
, and
F.
Lipparini
, “
How to make continuum solvation incredibly fast in a few simple steps: A practical guide to the domain decomposition paradigm for the conductor-like screening model
,”
Int. J. Quantum Chem.
119
,
e25669
(
2019
).
42.
D.
Loco
,
É.
Polack
,
S.
Caprasecca
,
L.
Lagardère
,
F.
Lipparini
,
J.-P.
Piquemal
, and
B.
Mennucci
, “
A QM/MM approach using the AMOEBA polarizable embedding: From ground state energies to electronic excitations
,”
J. Chem. Theory Comput.
12
,
3654
3661
(
2016
).
43.
D.
Loco
,
L.
Lagardère
,
G. A.
Cisneros
,
G.
Scalmani
,
M.
Frisch
,
F.
Lipparini
,
B.
Mennucci
, and
J.-P.
Piquemal
, “
Towards large scale hybrid QM/MM dynamics of complex systems with advanced point dipole polarizable embeddings
,”
Chem. Sci.
10
,
7200
7211
(
2019
).
44.
F.
Lipparini
,
B.
Stamm
,
E.
Cancès
,
Y.
Maday
, and
B.
Mennucci
, “
Fast domain decomposition algorithm for continuum solvation models: Energy and first derivatives
,”
J. Chem. Theory Comput.
9
,
3637
3648
(
2013
).
45.
F.
Lipparini
,
G.
Scalmani
,
L.
Lagardère
,
B.
Stamm
,
E.
Cancès
,
Y.
Maday
,
J.-P.
Piquemal
,
M. J.
Frisch
, and
B.
Mennucci
, “
Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy
,”
J. Chem. Phys.
141
,
184108
(
2014
).
46.
M.
Nottoli
,
B.
Stamm
,
G.
Scalmani
, and
F.
Lipparini
, “
Quantum calculations in solution of energies, structures, and properties with a domain decomposition polarizable continuum model
,”
J. Chem. Theory Comput.
15
,
6061
6073
(
2019
).
47.
A.
Klamt
and
G.
Schüürmann
, “
COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
,”
J. Chem. Soc., Perkin Trans. 2
1993
,
799
805
.
48.
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
, “
A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics
,”
J. Chem. Phys.
107
,
3032
3041
(
1997
).
49.
B.
Stamm
,
E.
Cancès
,
F.
Lipparini
, and
Y.
Maday
, “
A new discretization for the polarizable continuum model within the domain decomposition paradigm
,”
J. Chem. Phys.
144
,
054101
(
2016
).
50.
F.
Lipparini
,
C.
Cappelli
, and
V.
Barone
, “
A gauge invariant multiscale approach to magnetic spectroscopies in condensed phase: General three-layer model, computational implementation and pilot applications
,”
J. Chem. Phys.
138
,
234108
(
2013
).
51.
C.
Curutchet
,
A.
Muñoz-Losa
,
S.
Monti
,
J.
Kongsted
,
G. D.
Scholes
, and
B.
Mennucci
, “
Electronic energy transfer in condensed phase studied by a polarizable QM/MM model
,”
J. Chem. Theory Comput.
5
,
1838
1848
(
2009
).
52.
M.
Bondanza
,
M.
Nottoli
,
L.
Cupellini
,
F.
Lipparini
, and
B.
Mennucci
, “
Polarizable embedding QM/MM: The future gold standard for complex (bio)systems?
,”
Phys. Chem. Chem. Phys.
22
,
14433
14448
(
2020
).
53.
F.
Lipparini
,
L.
Lagardère
,
B.
Stamm
,
E.
Cancès
,
M.
Schnieders
,
P.
Ren
,
Y.
Maday
, and
J.-P.
Piquemal
, “
Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: I. Toward massively parallel direct space computations
,”
J. Chem. Theory Comput.
10
,
1638
1651
(
2014
).
54.
N. C.
Handy
and
H. F.
Schaefer
, “
On the evaluation of analytic energy derivatives for correlated wave functions
,”
J. Chem. Phys.
81
,
5031
5033
(
1984
).
55.
S.
Caprasecca
,
S.
Jurinovich
,
L.
Lagardère
,
B.
Stamm
, and
F.
Lipparini
, “
Achieving linear scaling in computational cost for a fully polarizable MM/continuum embedding
,”
J. Chem. Theory Comput.
11
,
694
704
(
2015
).
56.
A.
Albaugh
,
O.
Demerdash
, and
T.
Head-Gordon
, “
An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction
,”
J. Chem. Phys.
143
,
174104
(
2015
).
57.
V.
Vitale
,
J.
Dziedzic
,
A.
Albaugh
,
A. M. N.
Niklasson
,
T.
Head-Gordon
, and
C.-K.
Skylaris
, “
Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory
,”
J. Chem. Phys.
146
,
124115
(
2017
).
58.
B. T.
Thole
, “
Molecular polarizabilities calculated with a modified dipole interaction
,”
Chem. Phys.
59
,
341
(
1981
).
59.
J.
Wang
,
P.
Cieplak
,
J.
Li
,
J.
Wang
,
Q.
Cai
,
M.
Hsieh
,
H.
Lei
,
R.
Luo
, and
Y.
Duan
, “
Development of polarizable models for molecular mechanical calculations II: Induced dipole models significantly improve accuracy of intermolecular interaction energies
,”
J. Phys. Chem. B
115
,
3100
3111
(
2011
).

Supplementary Material

You do not currently have access to this content.