Photo-induced relaxation processes leading to excimer formations or other traps are in the focus of many investigations of optoelectronic materials because they severely affect the efficiencies of corresponding devices. Such relaxation effects comprise inter-monomer distortions in which the orientations of the monomer change with respect to each other, whereas intra-monomer distortions are variations in the geometry of single monomers. Such distortions are generally neglected in quantum chemical investigations of organic dye aggregates due to the accompanied high computational costs. In the present study, we investigate their relevance using perylene-bisimide dimers and diindenoperylene tetramers as model systems. Our calculations underline the importance of intra-monomer distortions on the shape of the potential energy surfaces as a function of the coupling between the monomers. The latter is shown to depend strongly on the electronic state under consideration. In particular, it differs between the first and second excited state of the aggregate. Additionally, the magnitude of the geometrical relaxation decreases if the exciton is delocalized over an increasing number of monomers. For the interpretation of the vibronic coupling model, pseudo-Jahn–Teller or Marcus theory can be employed. In the first part of this paper, we establish the accuracy of density functional theory-based approaches for the prediction of vibrationally resolved absorption spectra of organic semiconductors. These investigations underline the accuracy of those approaches although shortcomings become obvious as well. These calculations also indicate the strength of intra-monomer relaxation effects.

1.
F.
Würthner
,
C. R.
Saha-Möller
,
B.
Fimmel
,
S.
Ogi
,
P.
Leowanawat
, and
D.
Schmidt
, “
Perylene bisimide dye assemblies as archetype functional supramolecular materials
,”
Chem. Rev.
116
,
962
1052
(
2016
).
2.
H. E.
Katz
,
A. J.
Lovinger
,
J.
Johnson
,
C.
Kloc
,
T.
Siegrist
,
W.
Li
,
Y.-Y.
Lin
, and
A.
Dodabalapur
, “
A soluble and air-stable organic semiconductor with high electron mobility
,”
Nature
404
,
478
481
(
2000
).
3.
S. E.
Shaheen
,
G. E.
Jabbour
,
B.
Kippelen
,
N.
Peyghambarian
,
J. D.
Anderson
,
S. R.
Marder
,
N. R.
Armstrong
,
E.
Bellmann
, and
R. H.
Grubbs
, “
Organic light-emitting diode with 20 lm/W efficiency using a triphenyldiamine side-group polymer as the hole transport layer
,”
Appl. Phys. Lett.
74
,
3212
3214
(
1999
).
4.
C. W.
Tang
, “
2-layer organic photovoltaic cell
,”
Appl. Phys. Lett.
48
,
183
185
(
1986
).
5.
M. A.
Green
and
S. P.
Bremner
, “
Energy conversion approaches and materials for high-efficiency photovoltaics
,”
Nat. Mater.
16
,
23
34
(
2017
).
6.
P. E.
Hartnett
,
A.
Timalsina
,
H. S. S. R.
Matte
,
N.
Zhou
,
X.
Guo
,
W.
Zhao
,
A.
Facchetti
,
R. P. H.
Chang
,
M. C.
Hersam
,
M. R.
Wasielewski
, and
T. J.
Marks
, “
Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics
,”
J. Am. Chem. Soc.
136
,
16345
16356
(
2014
).
7.
X. W.
Zhan
,
A.
Facchetti
,
S.
Barlow
,
T. J.
Marks
,
M. A.
Ratner
,
M. R.
Wasielewski
, and
S. R.
Marder
, “
Rylene and related diimides for organic electronics
,”
Adv. Mater.
23
,
268
284
(
2011
).
8.
C.
Huang
,
S.
Barlow
, and
S. R.
Marder
, “
Perylene-3,4,9,10-tetracarboxylic acid diimides: Synthesis, physical properties, and use in organic electronics
,”
J. Org. Chem.
76
,
2386
2407
(
2011
).
9.
H.
Langhals
,
S.
Demmig
, and
T.
Potrawa
, “
The relation between packing effects and solid-state fluorescence of dyes
,”
J. Prakt. Chem.
333
,
733
748
(
1991
).
10.
M. C. R.
Delgado
,
E.-G.
Kim
,
D. A.
da Silva Filho
, and
J.-L.
Bredas
, “
Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: A density functional theory investigation
,”
J. Am. Chem. Soc.
132
,
3375
3387
(
2010
).
11.
S.
Shoaee
,
F.
Deledalle
,
P. S.
Tuladhar
,
R.
Shivanna
,
S.
Rajaram
,
K. S.
Narayan
, and
J. R.
Durrant
, “
A comparison of charge separation dynamics in organic blend films employing fullerene and perylene diimide electron acceptors
,”
J. Phys. Chem. Lett.
6
,
201
205
(
2015
).
12.
S.
Rajaram
,
R.
Shivanna
,
S. K.
Kandappa
, and
K. S.
Narayan
, “
Nonplanar perylene diimides as potential alternatives to fullerenes in organic solar cells
,”
J. Phys. Chem. Lett.
3
,
2405
2408
(
2012
).
13.
R. F.
Fink
,
J.
Seibt
,
V.
Engel
,
M.
Renz
,
M.
Kaupp
,
S.
Lochbrunner
,
H.-M.
Zhao
,
J.
Pfister
,
F.
Würthner
, and
B.
Engels
, “
Exciton trapping in π-conjugated materials: A quantum-chemistry-based protocol applied to perylene bisimide dye aggregates
,”
J. Am. Chem. Soc.
130
,
12858
12859
(
2008
).
14.
I. A.
Howard
,
F.
Laquai
,
P. E.
Keivanidis
,
R. H.
Friend
, and
N. C.
Greenham
, “
Perylene tetracarboxydiimide as an electron acceptor in organic solar cells: A study of charge generation and recombination
,”
J. Phys. Chem. C
113
,
21225
21232
(
2009
).
15.
B. A.
West
,
J. M.
Womick
,
L. E.
McNeil
,
K. J.
Tan
, and
A. M.
Moran
, “
Influence of vibronic coupling on band structure and exciton self-trapping in α-perylene
,”
J. Phys. Chem. B
115
,
5157
5167
(
2011
).
16.
J.
Hoche
,
H.-C.
Schmitt
,
A.
Humeniuk
,
I.
Fischer
,
R.
Mitrić
, and
M. I. S.
Röhr
, “
The mechanism of excimer formation: An experimental and theoretical study on the pyrene dimer
,”
Phys. Chem. Chem. Phys.
19
,
25002
25015
(
2017
).
17.
E. R.
Kennehan
,
C.
Grieco
,
A. N.
Brigeman
,
G. S.
Doucette
,
A.
Rimshaw
,
K.
Bisgaier
,
N. C.
Giebink
, and
J. B.
Asbury
, “
Using molecular vibrations to probe exciton delocalization in films of perylene diimides with ultrafast mid-IR spectroscopy
,”
Phys. Chem. Chem. Phys.
19
,
24829
24839
(
2017
).
18.
C.
Brückner
,
F.
Würthner
,
K.
Meerholz
, and
B.
Engels
, “
Structure-property relationships from atomistic multiscale simulations of the relevant processes in organic solar cells. I. Thermodynamic aspects
,”
J. Phys. Chem. C
121
,
4
25
(
2017
).
19.
C.
Brückner
,
F.
Würthner
,
K.
Meerholz
, and
B.
Engels
, “
Atomistic approach to simulate processes relevant for the efficiencies of organic solar cells as a function of molecular properties. II. Kinetic aspects
,”
J. Phys. Chem. C
121
,
26
51
(
2017
).
20.
H.
Bässler
, “
Charge transport in disordered organic photoconductors—A Monte-Carlo simulation study
,”
Phys. Status Solidi B
175
,
15
56
(
1993
).
21.
D.
Hertel
and
H.
Bässler
, “
Photoconduction in amorphous organic solids
,”
ChemPhysChem
9
,
666
688
(
2008
).
22.
C.
Brückner
,
M.
Stolte
,
F.
Würthner
,
J.
Pflaum
, and
B.
Engels
, “
QM/MM calculations combined with the dimer approach on the static disorder at organic-organic interfaces of thin-film organic solar cells composed of small molecules
,”
J. Phys. Org. Chem.
30
,
e3740
(
2017
).
23.
T. M.
Clarke
and
J. R.
Durrant
, “
Charge photogeneration in organic solar cells
,”
Chem. Rev.
110
,
6736
6767
(
2010
).
24.
W. L.
Liu
,
S.
Canola
,
A.
Köhn
,
B.
Engels
,
F.
Negri
, and
R. F.
Fink
, “
A model Hamiltonian tuned toward high level ab initio calculations to describe the character of excitonic states in perylenebisimide aggregates
,”
J. Comput. Chem.
39
,
1979
1989
(
2018
).
25.
W. L.
Liu
,
B.
Lunkenheimer
,
V.
Settels
,
B.
Engels
,
R. F.
Fink
, and
A.
Kohn
, “
A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems
,”
J. Chem. Phys.
143
,
084106
(
2015
).
26.
N. J.
Hestand
,
R. V.
Kazantsev
,
A. S.
Weingarten
,
L. C.
Palmer
,
S. I.
Stupp
, and
F. C.
Spano
, “
Extended-charge-transfer excitons in crystalline supramolecular photocatalytic scaffolds
,”
J. Am. Chem. Soc.
138
,
11762
11774
(
2016
).
27.
H.-M.
Zhao
,
J.
Pfister
,
V.
Settels
,
M.
Renz
,
M.
Kaupp
,
V. C.
Dehm
,
F.
Würthner
,
R. F.
Fink
, and
B.
Engels
, “
Understanding ground- and excited-state properties of perylene tetracarboxylic acid bisimide crystals by means of quantum chemical computations
,”
J. Am. Chem. Soc.
131
,
15660
15668
(
2009
).
28.
V.
Settels
,
W.
Liu
,
J.
Pflaum
,
R. F.
Fink
, and
B.
Engels
, “
Comparison of the electronic structure of different perylene-based dye-aggregates
,”
J. Comput. Chem.
33
,
1544
1553
(
2012
).
29.
V.
Settels
,
A.
Schubert
,
M.
Tafipolski
,
W.
Liu
,
V.
Stehr
,
A. K.
Topczak
,
J.
Pflaum
,
C.
Deibel
,
R. F.
Fink
,
V.
Engel
, and
B.
Engels
, “
Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors
,”
J. Am. Chem. Soc.
136
,
9327
9337
(
2014
).
30.
A.
Schubert
,
M.
Falge
,
M.
Kess
,
V.
Settels
,
S.
Lochbrunner
,
W. T.
Strunz
,
F.
Würthner
,
B.
Engels
, and
V.
Engel
, “
Theoretical analysis of the relaxation dynamics in perylene bisimide dimers excited by femtosecond laser pulses
,”
J. Phys. Chem. A
118
,
1403
1412
(
2014
).
31.
A.
Schubert
,
V.
Settels
,
W. L.
Liu
,
F.
Würthner
,
C.
Meier
,
R. F.
Fink
,
S.
Schindlbeck
,
S.
Lochbrunner
,
B.
Engels
, and
V.
Engel
, “
Ultrafast exciton self-trapping upon geometry deformation in perylene-based molecular aggregates
,”
J. Phys. Chem. Lett.
4
,
792
796
(
2013
).
32.
B.
Engels
and
V.
Engel
, “
The dimer-approach to characterize opto-electronic properties of and exciton trapping and diffusion in organic semiconductor aggregates and crystals
,”
Phys. Chem. Chem. Phys.
19
,
12604
12619
(
2017
).
33.
Z. J.
Chen
,
V.
Stepanenko
,
V.
Dehm
,
P.
Prins
,
L. D. A.
Siebbeles
,
J.
Seibt
,
P.
Marquetand
,
V.
Engel
, and
F.
Würthner
, “
Photoluminescence and conductivity of self-assembled π–π stacks of perylene bisimide dyes
,”
Chem.-Eur. J.
13
,
436
449
(
2007
).
34.
S.
Samanta
,
S. K.
Ray
,
S.
Deolka
,
S.
Saha
,
K. R.
Pradeep
,
R.
Bhowal
,
N.
Ghosh
, and
D.
Chaudhuri
, “
Safeguarding long-lived excitons from excimer traps in H-aggregated dye-assemblies
,”
Chem. Sci.
11
,
5710
5715
(
2020
).
35.
W.
Popp
,
M.
Polkehn
,
R.
Binder
, and
I.
Burghardt
, “
Coherent charge transfer exciton formation in regioregular P3HT: A quantum dynamical study
,”
J. Phys. Chem. Lett.
10
,
3326
3332
(
2019
).
36.
R.
Binder
and
I.
Burghardt
, “
First-principles quantum simulations of exciton diffusion on a minimal oligothiophene chain at finite temperature
,”
Faraday Discuss.
221
,
406
427
(
2020
).
37.
A.
Segalina
,
X.
Assfeld
,
A.
Monari
, and
M.
Pastore
, “
Computational modeling of exciton localization in self-assembled perylene helices: Effects of thermal motion and aggregate size
,”
J. Phys. Chem. C
123
,
6427
6437
(
2019
).
38.
M. R.
Talipov
,
M. V.
Ivanov
, and
R.
Rathore
, “
Inclusion of asymptotic dependence of reorganization energy in the modified Marcus-based multistate model accurately predicts hole distribution in poly-p-phenylene wires (vol 120, pg 6402, 2016)
,”
J. Phys. Chem. C
120
,
10720
(
2016
).
39.
R. L.
Fulton
and
M.
Gouterman
, “
Vibronic coupling. 1. Mathematical treatment for 2 electronic states
,”
J. Chem. Phys.
35
,
1059
(
1961
).
40.
R. L.
Fulton
and
M.
Gouterman
, “
Vibronic coupling. 2. Spectra of dimers
,”
J. Chem. Phys.
41
,
2280
(
1964
).
41.
F. P.
Diehl
,
C.
Roos
,
A.
Duymaz
,
B.
Lunkenheimer
,
A.
Köhn
, and
T.
Basché
, “
Emergence of coherence through variation of intermolecular distances in a series of molecular dimers
,”
J. Phys. Chem. Lett.
5
,
262
269
(
2014
).
42.
P. H. P.
Harbach
and
A.
Dreuw
, “
A fresh look at excitonically coupled chromophores from a Jahn-Teller perspective
,”
Chem. Phys.
377
,
78
85
(
2010
).
43.
P.
Garcia-Fernandez
,
L.
Andjelkovic
,
M.
Zlatar
,
M.
Gruden-Pavlovic
, and
A.
Dreuw
, “
A simple monomer-based model-Hamiltonian approach to combine excitonic coupling and Jahn-Teller theory
,”
J. Chem. Phys.
139
,
174101
(
2013
).
44.
G.
Klebe
,
F.
Graser
,
E.
Hädicke
, and
J.
Berndt
, “
Crystallochromy as a solid-state effect—Correlation of molecular-conformation, crystal packing and color in perylene-3,4-9,10-bis(dicarboximide) pigments
,”
Acta Crystallogr., Sect. B: Struct. Sci.
45
,
69
77
(
1989
).
45.
M.
Wewer
and
F.
Stienkemeier
, “
Laser-induced fluorescence spectroscopy of N,N′-dimethyl 3,4,9,10-perylene tetracarboxylic diimide monomers and oligomers attached to helium nanodroplets
,”
Phys. Chem. Chem. Phys.
7
,
1171
1175
(
2005
).
46.
B.
Fimmel
,
M.
Son
,
Y. M.
Sung
,
M.
Grüne
,
B.
Engels
,
D.
Kim
, and
F.
Würthner
, “
Phenylene ethynylene-tethered perylene bisimide folda-dimer and folda-trimer: Investigations on folding features in ground and excited states
,”
Chem.-Eur. J.
21
,
615
630
(
2015
).
47.
M.
Peric
,
B.
Engels
, and
S. D.
Peyerimhoff
, “
Ab initio investigation of the vibronic structure of the C2H spectrum—Calculation of the hyperfine coupling-constants for the 3 lowest-lying electronic states
,”
J. Mol. Spectrosc.
150
,
56
69
(
1991
).
48.
M.
Peric
,
B.
Engels
, and
S. D.
Peyerimhoff
, “
Ab initio investigation of the vibronic structure of the C2H spectrum—Computation of the vibronically averaged values for the hyperfine coupling-constants
,”
J. Mol. Spectrosc.
150
,
70
85
(
1991
).
49.
M. R.
Silva-Junior
,
M.
Schreiber
,
S. P. A.
Sauer
, and
W.
Thiel
, “
Benchmarks of electronically excited states: Basis set effects on CASPT2 results
,”
J. Chem. Phys.
133
,
174318
(
2010
).
50.
M. R.
Silva-Junior
,
M.
Schreiber
,
S. P. A.
Sauer
, and
W.
Thiel
, “
Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction
,”
J. Chem. Phys.
129
,
104103
(
2008
).
51.
M.
Schmittel
,
J.-P.
Steffen
,
M.
Maywald
,
B.
Engels
,
H.
Helten
, and
P.
Musch
, “
Ring size effects in the C2-C6 biradical cyclisation of enyne-allenes and the relevance for neocarzinostatin
,”
J. Chem. Soc., Perkin Trans. 2
2
,
1331
1339
(
2001
).
52.
V.
Pless
,
H. U.
Suter
, and
B.
Engels
, “
Ab initio study of the energy difference between the cyclic and linear-forms of the C6 molecule
,”
J. Chem. Phys.
101
,
4042
4048
(
1994
).
53.
H. U.
Suter
,
V.
Pless
,
M.
Ernzerhof
, and
B.
Engels
, “
Difficulties in the calculation of electron-spin-resonance parameters using density-functional methods
,”
Chem. Phys. Lett.
230
,
398
404
(
1994
).
54.
A.
Hellweg
,
S. A.
Grün
, and
C.
Hättig
, “
Benchmarking the performance of spin-component scaled CC2 in ground and electronically excited states
,”
Phys. Chem. Chem. Phys.
10
,
4119
4127
(
2008
).
55.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
, “
The second-order approximate coupled-cluster singles and doubles model CC2
,”
Chem. Phys. Lett.
243
,
409
418
(
1995
).
56.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
, “
Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr
,”
J. Chem. Phys.
100
,
5829
5835
(
1994
).
57.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
, “
RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency
,”
Chem. Phys. Lett.
294
,
143
152
(
1998
).
58.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
, “
Auxiliary basis-sets to approximate Coulomb potentials
,”
Chem. Phys. Lett.
240
,
283
289
(
1995
).
59.
N. O. C.
Winter
,
N. K.
Graf
,
S.
Leutwyler
, and
C.
Hättig
, “
Benchmarks for 0–0 transitions of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data
,”
Phys. Chem. Chem. Phys.
15
,
6623
6630
(
2013
).
60.
O.
Oeltermann
,
C.
Brand
,
B.
Engels
,
J.
Tatchen
, and
M.
Schmitt
, “
The structure of 5-cyanoindole in the ground and the lowest electronically excited singlet states, deduced from rotationally resolved electronic spectroscopy and ab initio theory
,”
Phys. Chem. Chem. Phys.
14
,
10266
10270
(
2012
).
61.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
,
6615
6620
(
2008
).
62.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
63.
E. R.
Davidson
, “
Comment on Dunning’s correlation-consistent basis sets—Comment
,”
Chem. Phys. Lett.
260
,
514
518
(
1996
).
64.
D.
Bellinger
,
J.
Pflaum
,
C.
Brüning
,
V.
Engel
, and
B.
Engels
, “
The electronic character of PTCDA thin films in comparison to other perylene-based organic semi-conductors: Ab initio-, TD-DFT and semi-empirical computations of the opto-electronic properties of large aggregates
,”
Phys. Chem. Chem. Phys.
19
,
2434
2448
(
2017
).
65.
S.
Wirsing
,
M.
Hänsel
,
V.
Belova
,
F.
Schreiber
,
K.
Broch
,
B.
Engels
, and
P.
Tegeder
, “
Excited-state dynamics in perylene-based organic semiconductor thin films: Theory meets experiment
,”
J. Phys. Chem. C
123
,
27561
27572
(
2019
).
66.
M. J.
Frisch
, Gaussian 16, Revision A.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
67.
J.
Bloino
,
M.
Biczysko
,
F.
Santoro
, and
V.
Barone
, “
General approach to compute vibrationally resolved one-photon electronic spectra
,”
J. Chem. Theory Comput.
6
,
1256
1274
(
2010
).
68.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
, “
General time dependent approach to vibronic spectroscopy including Franck-Condon, Herzberg-Teller, and Duschinsky effects
,”
J. Chem. Theory Comput.
9
,
4097
4115
(
2013
).
69.
S.
Miertus
,
E.
Scrocco
, and
J.
Tomasi
, “
Electrostatic interaction of a solute with a continuum—A direct utilization of ab initio molecular potentials for the prevision of solvent effects
,”
Chem. Phys.
55
,
117
129
(
1981
).
70.
S.
Miertus
and
J.
Tomasi
, “
Approximate evaluations of the electrostatic free-energy and internal energy changes in solution processes
,”
Chem. Phys.
65
,
239
245
(
1982
).
71.
J. L.
Pascual-ahuir
,
E.
Silla
, and
I.
Tuñon
, “
GEPOL—An improved description of molecular-surfaces. 3. A new algorithm for the computation of a solvent-excluding surface
,”
J. Comput. Chem.
15
,
1127
1138
(
1994
).
72.
B.
Mennucci
,
R.
Cammi
, and
J.
Tomasi
, “
Excited states and solvatochromic shifts within a nonequilibrium solvation approach: A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level
,”
J. Chem. Phys.
109
,
2798
2807
(
1998
).
73.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3093
(
2005
).
74.
C.
Brückner
and
B.
Engels
, “
Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet-triplet gaps
,”
Chem. Phys.
482
,
319
338
(
2017
).
75.
F.
Plasser
,
M.
Wormit
, and
A.
Dreuw
, “
New tools for the systematic analysis and visualization of electronic excitations. I. Formalism
,”
J. Chem. Phys.
141
,
024106
(
2014
).
76.
F.
Plasser
,
S. A.
Bappler
,
M.
Wormit
, and
A.
Dreuw
, “
New tools for the systematic analysis and visualization of electronic excitations. II. Applications
,”
J. Chem. Phys.
141
,
024107
(
2014
).
77.
B.
Engels
and
S. D.
Peyerimhoff
, “
The hyperfine coupling-constants of the X3 states of NH influence of polarization functions and configuration space on the description of spin polarization
,”
Mol. Phys.
67
,
583
600
(
1989
).
78.
B. A.
Engels
, “
Detailed study of the configuration selected multireference configuration-interaction method combined with perturbation-theory to correct the wave-function
,”
J. Chem. Phys.
100
,
1380
1386
(
1994
).
79.
B. O.
Roos
,
R.
Lindh
,
P. A.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
,
Multiconfigurational Quantum Chemistry
(
John Wiley & Sons
,
Hoboken, NJ
,
216
).
80.
C.
Brueckner
and
B.
Engels
, “
Benchmarking ground-state geometries and vertical excitation energies of a selection of P-type semiconducting molecules with different polarity
,”
J. Phys. Chem. A
119
,
12876
12891
(
2015
).
81.
C.
Walter
,
V.
Kramer
, and
B.
Engels
, “
On the applicability of time-dependent density functional theory (TDDFT) and semiempirical methods to the computation of excited-state potential energy surfaces of perylene-based dye-aggregates
,”
Int. J. Quantum Chem.
117
,
e25337
(
2017
).
82.
J.
Auerswald
,
B.
Engels
,
I.
Fischer
,
T.
Gerbich
,
J.
Herterich
,
A.
Krueger
,
M.
Lang
,
H.-C.
Schmitt
,
C.
Schon
, and
C.
Walter
, “
The electronic structure of pyracene: A spectroscopic and computational study
,”
Phys. Chem. Chem. Phys.
15
,
8151
8161
(
2013
).
83.
W.
Liu
,
V.
Settels
,
P. H. P.
Harbach
,
A.
Dreuw
,
R. F.
Fink
, and
B.
Engels
, “
Assessment of TD-DFT- and TD-HF-based approaches for the prediction of exciton coupling parameters, potential energy curves, and electronic characters of electronically excited aggregates
,”
J. Comput. Chem.
32
,
1971
1981
(
2011
).
84.
A.
Fihey
and
D.
Jacquemin
, “
Performances of density functional tight-binding methods for describing ground and excited state geometries of organic molecules
,”
J. Chem. Theory Comput.
15
,
6267
6276
(
2019
).
85.
C.
Suellen
,
R. G.
Freitas
,
P.-F.
Loos
, and
D.
Jacquemin
, “
Cross-comparisons between experiment, TD-DFT, CC, and ADC for transition energies
,”
J. Chem. Theory Comput.
15
,
4581
4590
(
2019
).
86.
U.
Heinemeyer
,
R.
Scholz
,
L.
Gisslén
,
M. I.
Alonso
,
J. O.
Ossó
,
M.
Garriga
,
A.
Hinderhofer
,
M.
Kytka
,
S.
Kowarik
,
A.
Gerlach
, and
F.
Schreiber
, “
Exciton-phonon coupling in diindenoperylene thin films
,”
Phys. Rev. B
78
,
085210
(
2008
).
87.
E. M.
Huber
,
G.
de Bruin
,
W.
Heinemeyer
,
G.
Paniagua Soriano
,
H. S.
Overkleeft
, and
M.
Groll
, “
Systematic analyses of substrate preferences of 20S proteasomes using peptidic epoxyketone inhibitors
,”
J. Am. Chem. Soc.
137
,
7835
7842
(
2015
).
88.
V.
Stehr
,
R. F.
Fink
,
B.
Engels
,
J.
Pflaum
, and
C.
Deibel
, “
Singlet exciton diffusion in organic crystals based on Marcus transfer rates
,”
J. Chem. Theory Comput.
10
,
1242
1255
(
2014
).
89.
M.
Malagoli
,
V.
Coropceanu
,
D. A.
da Silva Filho
, and
J. L.
Brédas
, “
A multimode analysis of the gas-phase photoelectron spectra in oligoacenes
,”
J. Chem. Phys.
120
,
7490
7496
(
2004
).
90.
U.
Müller
,
L.
Roos
,
M.
Frank
,
M.
Deutsch
,
S.
Hammer
,
M.
Krumrein
,
A.
Friedrich
,
T. B.
Marder
,
B.
Engels
,
A.
Krueger
, and
J.
Pflaum
, “
Role of intermolecular interactions in the excited-state photophysics of tetracene and 2,2′-ditetracene
,”
J. Phys. Chem. C
124
,
19435
(
2020
).
91.
S.
Kowarik
,
A.
Gerlach
,
S.
Sellner
,
L.
Cavalcanti
,
O.
Konovalov
, and
F.
Schreiber
, “
Real-time X-ray diffraction measurements of structural dynamics and polymorphism in diindenoperylene growth
,”
Appl. Phys. A
95
,
233
239
(
2009
).
92.
M. A.
Heinrich
,
J.
Pflaum
,
A. K.
Tripathi
,
W.
Frey
,
M. L.
Steigerwald
, and
T.
Siegrist
, “
Enantiotropic polymorphism in di-indenoperylene
,”
J. Phys. Chem. C
111
,
18878
18881
(
2007
).
93.
C.
Brückner
, “
The electronic structure and optoelectronic processes at the interfaces in organic solar cells composed of small organic molecules—A computational analysis of molecular, intermolecular, and aggregate aspects
,” Ph.D. thesis,
Universität Würzburg
,
2016
.

Supplementary Material

You do not currently have access to this content.