We introduce new and robust decompositions of mean-field Hartree–Fock and Kohn–Sham density functional theory relying on the use of localized molecular orbitals and physically sound charge population protocols. The new lossless property decompositions, which allow for partitioning one-electron reduced density matrices into either bond-wise or atomic contributions, are compared to alternatives from the literature with regard to both molecular energies and dipole moments. Besides commenting on possible applications as an interpretative tool in the rationalization of certain electronic phenomena, we demonstrate how decomposed mean-field theory makes it possible to expose and amplify compositional features in the context of machine-learned quantum chemistry. This is made possible by improving upon the granularity of the underlying data. On the basis of our preliminary proof-of-concept results, we conjecture that many of the structure–property inferences in existence today may be further refined by efficiently leveraging an increase in dataset complexity and richness.

1.
J.
Čížek
, “
On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods
,”
J. Chem. Phys.
45
,
4256
(
1966
).
2.
J.
Čížek
, “
On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules
,”
Adv. Chem. Phys.
14
,
35
(
1969
).
3.
J.
Paldus
,
J.
Čížek
, and
I.
Shavitt
, “
Correlation problems in atomic and molecular systems. IV. Extended coupled-pair many-electron theory and its application to the BH3 molecule
,”
Phys. Rev. A
5
,
50
(
1972
).
4.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: Many-Body Perturbation Theory and Coupled-Cluster Theory
(
Cambridge University Press
,
Cambridge, UK
,
2009
).
5.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
, 1st ed. (
Wiley & Sons, Ltd.
,
West Sussex, UK
,
2000
).
6.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
, “
Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in slater determinant space
,”
J. Chem. Phys.
131
,
054106
(
2009
).
7.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
, “
Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo
,”
J. Chem. Phys.
132
,
041103
(
2010
).
8.
J. E.
Deustua
,
J.
Shen
, and
P.
Piecuch
, “
Converging high-level coupled-cluster energetics by Monte Carlo sampling and moment expansions
,”
Phys. Rev. Lett.
119
,
223003
(
2017
).
9.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
, “
Semistochastic heat-bath configuration interaction method: Selected configuration interaction with semistochastic perturbation theory
,”
J. Chem. Theory Comput.
13
,
1595
(
2017
).
10.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
(
1992
).
11.
S. R.
White
, “
Density-matrix algorithms for quantum renormalization groups
,”
Phys. Rev. B
48
,
10345
(
1993
).
12.
S. R.
White
and
R. L.
Martin
, “
Ab initio quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
110
,
4127
(
1999
).
13.
G. K.-L.
Chan
and
S.
Sharma
, “
The density matrix renormalization group in quantum chemistry
,”
Annu. Rev. Phys. Chem.
62
,
465
(
2011
).
14.
J. J.
Eriksen
,
F.
Lipparini
, and
J.
Gauss
, “
Virtual orbital many-body expansions: A possible route towards the full configuration interaction limit
,”
J. Phys. Chem. Lett.
8
,
4633
(
2017
).
15.
J. J.
Eriksen
and
J.
Gauss
, “
Generalized many-body expanded full configuration interaction theory
,”
J. Phys. Chem. Lett.
10
,
7910
(
2019
).
16.
J. J.
Eriksen
,
T. A.
Anderson
,
J. E.
Deustua
,
K.
Ghanem
,
D.
Hait
,
M. R.
Hoffmann
,
S.
Lee
,
D. S.
Levine
,
I.
Magoulas
,
J.
Shen
,
N. M.
Tubman
,
K. B.
Whaley
,
E.
Xu
,
Y.
Yao
,
N.
Zhang
,
A.
Alavi
,
G. K.-L.
Chan
,
M.
Head-Gordon
,
W.
Liu
,
P.
Piecuch
,
S.
Sharma
,
S. L.
Ten-no
,
C. J.
Umrigar
, and
J.
Gauss
, “
The ground state electronic energy of benzene
,”
J. Phys. Chem. Lett.
11
,
8922
(
2020
).
17.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
18.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
19.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford, UK
,
1994
).
20.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Challenges for density functional theory
,”
Chem. Rev.
112
,
289
(
2012
).
21.
A. D.
Becke
, “
Perspective: Fifty years of density-functional theory in chemical physics
,”
J. Chem. Phys.
140
,
18A301
(
2014
).
22.
K.
Burke
, “
Perspective on density functional theory
,”
J. Chem. Phys.
136
,
150901
(
2012
).
23.
A.
Pribram-Jones
,
D. A.
Gross
, and
K.
Burke
, “
DFT: A Theory Full of Holes?
,”
Ann. Rev. Phys. Chem.
66
,
283
(
2015
).
24.
N.
Mardirossian
and
M.
Head-Gordon
, “
Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals
,”
Mol. Phys.
115
,
2315
(
2017
).
25.
P.
Miró
,
M.
Audiffred
, and
T.
Heine
, “
An atlas of two-dimensional materials
,”
Chem. Soc. Rev.
43
,
6537
(
2014
).
26.
F. A.
Rasmussen
and
K. S.
Thygesen
, “
Computational 2D materials database: Electronic structure of transition-metal dichalcogenides and oxides
,”
J. Phys. Chem. C
119
,
13169
(
2015
).
27.
J. D.
Evans
,
G.
Fraux
,
R.
Gaillac
,
D.
Kohen
,
F.
Trousselet
,
J.-M.
Vanson
, and
F.-X.
Coudert
, “
Computational chemistry methods for nanoporous materials
,”
Chem. Mater.
29
,
199
(
2017
).
28.
R. J.
Maurer
,
C.
Freysoldt
,
A. M.
Reilly
,
J. G.
Brandenburg
,
O. T.
Hofmann
,
T.
Björkman
,
S.
Lebègue
, and
A.
Tkatchenko
, “
Advances in density-functional calculations for materials modeling
,”
Annu. Rev. Mater. Res.
49
,
1
(
2019
).
29.
G. R.
Schleder
,
A. C. M.
Padilha
,
C. M.
Acosta
,
M.
Costa
, and
A.
Fazzio
, “
From DFT to machine learning: Recent approaches to materials science—A review
,”
J. Phys.: Mater.
2
,
032001
(
2019
).
30.
E.
Hernández
and
M. J.
Gillan
, “
Self-consistent first-principles technique with linear scaling
,”
Phys. Rev. B
51
,
10157
(
1995
).
31.
D. R.
Bowler
,
T.
Miyazaki
, and
M. J.
Gillan
, “
Recent progress in linear scaling ab initio electronic structure techniques
,”
J. Phys.: Condens. Matter
14
,
2781
(
2002
).
32.
N. D. M.
Hine
,
P. D.
Haynes
,
A. A.
Mostofi
,
C.-K.
Skylaris
, and
M. C.
Payne
, “
Linear-scaling density-functional theory with tens of thousands of atoms: Expanding the scope and scale of calculations with ONETEP
,”
Comput. Phys. Commun.
180
,
1041
(
2009
).
33.
S.
Sæther
,
T.
Kjærgaard
,
H.
Koch
, and
I.-M.
Høyvik
, “
Density-based multilevel Hartree-Fock model
,”
J. Chem. Theory Comput.
13
,
5282
(
2017
).
34.
J. G.
Brandenburg
,
C.
Bannwarth
,
A.
Hansen
, and
S.
Grimme
, “
B97-3c: A revised low-cost variant of the B97-D density functional method
,”
J. Chem. Phys.
148
,
064104
(
2018
).
35.
E.
Caldeweyher
and
J. G.
Brandenburg
, “
Simplified DFT methods for consistent structures and energies of large systems
,”
J. Phys.: Condens. Matter
30
,
213001
(
2018
).
36.
G.
Marrazzini
,
T.
Giovannini
,
M.
Scavino
,
F.
Egidi
,
C.
Cappelli
, and
H.
Koch
, “
Multilevel density functional theory
,” arXiv:2009.05333 (
2020
).
37.
A. P.
Bartók
and
G.
Csányi
, “
Gaussian approximation potentials: A brief tutorial introduction
,”
Int. J. Quantum Chem.
115
,
1051
(
2015
).
38.
M.
Rupp
, “
Machine learning for quantum mechanics in a nutshell
,”
Int. J. Quantum Chem.
115
,
1058
(
2015
).
39.
M.
Rupp
,
O. A.
von Lilienfeld
, and
K.
Burke
, “
Guest editorial: Special topic on data-enabled theoretical chemistry
,”
J. Chem. Phys.
148
,
241401
(
2018
).
40.
O. A.
von Lilienfeld
and
K.
Burke
, “
Retrospective on a decade of machine learning for chemical discovery
,”
Nat. Commun.
11
,
4895
(
2020
).
41.
M.
Ceriotti
, “
Unsupervised machine learning in atomistic simulations, between predictions and understanding
,”
J. Chem. Phys.
150
,
150901
(
2019
).
42.
P. O.
Dral
, “
Quantum chemistry in the age of machine learning
,”
J. Phys. Chem. Lett.
11
,
2336
(
2020
).
43.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
K.-R.
Müller
, and
K.
Burke
, “
Finding density functionals with machine learning
,”
J. Chem. Phys.
108
,
253002
(
2012
).
44.
F.
Brockherde
,
L.
Vogt
,
L.
Li
,
M. E.
Tuckerman
,
K.
Burke
, and
K.-R.
Müller
, “
Bypassing the Kohn-Sham equations with machine learning
,”
Nat. Commun.
8
,
872
(
2017
).
45.
M.
Bogojeski
,
L.
Vogt-Maranto
,
M. E.
Tuckerman
,
K.-R.
Müller
, and
K.
Burke
, “
Quantum chemical accuracy from density functional approximations via machine learning
,”
Nat. Commun.
11
,
5223
(
2020
).
46.
L.
Li
,
S.
Hoyer
,
R.
Pederson
,
R.
Sun
,
E. D.
Cubuk
,
P.
Riley
, and
K.
Burke
, “
Kohn-Sham equations as regularizer: Building prior knowledge into machine-learned physics
,” arXiv:2009.08551 (
2020
).
47.
R.
Meyer
,
M.
Weichselbaum
, and
A. W.
Hauser
, “
Machine learning approaches toward orbital-free density functional theory: Simultaneous training on the kinetic energy density functional and its functional derivative
,”
J. Chem. Theory Comput.
16
,
5685
(
2020
).
48.
K.
Yao
and
J.
Parkhill
, “
Kinetic energy of hydrocarbons as a function of electron density and convolutional neural networks
,”
J. Chem. Theory Comput.
12
,
1139
(
2016
).
49.
G.
Hegde
and
R. C.
Bowen
, “
Machine-learned approximations to density functional theory Hamiltonians
,”
Sci. Rep.
7
,
42669
(
2017
).
50.
K.
Ryczko
,
D.
Strubbe
, and
I.
Tamblyn
, “
Deep learning and density functional theory
,”
Phys. Rev. A
100
,
022512
(
2019
).
51.
S.
Dick
and
M.
Fernandez-Serra
, “
Learning from the density to correct total energy and forces in first principle simulations
,”
J. Chem. Phys.
151
,
144102
(
2019
).
52.
S.
Dick
and
M.
Fernandez-Serra
, “
Machine learning accurate exchange and correlation functionals of the electronic density
,”
Nat. Commun.
11
,
3509
(
2020
).
53.
P. D.
Mezei
and
O. A.
von Lilienfeld
, “
Non-covalent quantum machine learning corrections to density functionals
,”
J. Chem. Theory Comput.
16
,
2647
(
2020
).
54.
A. V.
Sinitskiy
and
V. S.
Pande
, “
Deep neural network computes electron densities and energies of a large set of organic molecules faster than density functional theory (DFT)
,” arXiv:1809.02723 (
2018
).
55.
A. V.
Sinitskiy
and
V. S.
Pande
, “
Physical machine learning outperforms ‘human learning’ in quantum chemistry
,” arXiv:1908.00971 (
2019
).
56.
A.
Ryabov
and
P.
Zhilyaev
, “
Neural network interpolation of exchange-correlation functional
,”
Sci. Rep.
10
,
8000
(
2020
).
57.
X.
Lei
and
A. J.
Medford
, “
Design and analysis of machine learning exchange-correlation functionals via rotationally invariant convolutional descriptors
,”
Phys. Rev. Mater.
3
,
063801
(
2019
).
58.
A.
Chandrasekaran
,
D.
Kamal
,
R.
Batra
,
C.
Kim
,
L.
Chen
, and
R.
Ramprasad
, “
Solving the electronic structure problem with machine learning
,”
npj Comput. Mater.
5
,
22
(
2019
).
59.
Y.
Zhou
,
J.
Wu
,
S.
Chen
, and
G.
Chen
, “
Toward the exact exchange-correlation potential: A three-dimensional convolutional neural network construct
,”
J. Phys. Chem. Lett.
10
,
7264
(
2019
).
60.
R.
Nagai
,
R.
Akashi
, and
O.
Sugino
, “
Completing density functional theory by machine learning hidden messages from molecules
,”
npj Comput. Mater.
6
,
43
(
2020
).
61.
Y.
Chen
,
L.
Zhang
,
H.
Wang
, and
W.
E
, “
DeePKS: A comprehensive data-driven approach towards chemically accurate density functional theory
,” arXiv:2008.00167 (
2020
).
62.
N.
Artrith
,
A.
Urban
, and
G.
Ceder
, “
Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
,”
Phys. Rev. B
96
,
014112
(
2017
).
63.
C. R.
Collins
,
G. J.
Gordon
,
O. A.
von Lilienfeld
, and
D. J.
Yaron
, “
Constant size descriptors for accurate machine learning models of molecular properties
,”
J. Chem. Phys.
148
,
241718
(
2018
).
64.
J.
Schrier
, “
Can one hear the shape of a molecule (from its Coulomb matrix eigenvalues)?
,”
J. Chem. Inf. Model.
60
,
3804
(
2020
).
65.
L.
Li
,
H.
Li
,
I. D.
Seymour
,
L.
Koziol
, and
G.
Henkelman
, “
Pair-distribution-function guided optimization of fingerprints for atom-centered neural network potentials
,”
J. Chem. Phys.
152
,
224102
(
2020
).
66.
B.
Onat
,
C.
Ortner
, and
J. R.
Kermode
, “
Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials
,”
J. Chem. Phys.
153
,
144106
(
2020
).
67.
J.
Nigam
,
S.
Pozdnyakov
, and
M.
Ceriotti
, “
Incompleteness of atomic structure representations
,”
J. Chem. Phys.
153
,
121101
(
2020
).
68.
M.-P. V.
Christiansen
,
H. L.
Mortensen
,
S. A.
Meldgaard
, and
B.
Hammer
, “
Gaussian representation for image recognition and reinforcement learning of atomistic structure
,”
J. Chem. Phys.
153
,
044107
(
2020
).
69.
S.
De
,
A. P.
Bartók
,
G.
Csányi
, and
M.
Ceriotti
, “
Comparing molecules and solids across structural and alchemical space
,”
Phys. Chem. Chem. Phys.
18
,
13754
(
2016
).
70.
J. S.
Smith
,
B.
Nebgen
,
N.
Lubbers
,
O.
Isayev
, and
A. E.
Roitberg
, “
Less is more: Sampling chemical space with active learning
,”
J. Chem. Phys.
148
,
241733
(
2018
).
71.
O. A.
von Lilienfeld
, “
Quantum machine learning in chemical compound space
,”
Angew. Chem., Int. Ed.
57
,
4164
(
2018
).
72.
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Exploring chemical compound space with quantum-based machine learning
,”
Nat. Rev. Chem.
4
,
347
(
2020
).
73.
A.
Tkatchenko
, “
Machine learning for chemical discovery
,”
Nat. Commun.
11
,
4125
(
2020
).
74.
J.
Zhang
,
Y.-K.
Lei
,
Z.
Zhang
,
J.
Chang
,
M.
Li
,
X.
Han
,
L.
Yang
,
Y. I.
Yang
, and
Y. Q.
Gao
, “
A perspective on deep learning for molecular modeling and simulations
,”
J. Phys. Chem. A
124
,
6745
(
2020
).
75.
B. G.
Sumpter
and
D. W.
Noid
, “
Potential energy surfaces for macromolecules. A neural network technique
,”
Chem. Phys. Lett.
192
,
455
(
1992
).
76.
T. S.
Ho
and
H.
Rabitz
, “
A general method for constructing multidimensional molecular potential energy surfaces from ab initio calculations
,”
J. Chem. Phys.
104
,
2584
(
1996
).
77.
S.
Lorenz
,
A.
Groß
, and
M.
Scheffler
, “
Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
,”
Chem. Phys. Lett.
395
,
210
(
2004
).
78.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
79.
B. J.
Braams
and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces in high dimensionality
,”
Int. Rev. Phys. Chem.
28
,
577
(
2009
).
80.
M.
Malshe
,
R.
Narulkar
,
L. M.
Raff
,
M.
Hagan
,
S.
Bukkapatnam
,
P. M.
Agrawal
, and
R.
Komanduri
, “
Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations
,”
J. Chem. Phys.
130
,
184102
(
2009
).
81.
J.
Behler
and
M.
Parrinello
, “
Potential energy surfaces fitted by artificial neural networks
,”
J. Phys. Chem. A
114
,
3371
(
2010
).
82.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
83.
S.
Manzhos
and
T.
Carrington
, Jr.
, “
A random-sampling high dimensional model representation neural network for building potential energy surfaces
,”
J. Chem. Phys.
125
,
084109
(
2006
).
84.
S.
Manzhos
and
T.
Carrington
, Jr.
, “
Using redundant coordinates to represent potential energy surfaces with lower-dimensional functions
,”
J. Chem. Phys.
127
,
014103
(
2007
).
85.
S.
Manzhos
,
R.
Dawes
, and
T.
Carrington
, Jr.
, “
Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces
,”
Int. J. Quantum Chem.
115
,
1012
(
2015
).
86.
S.
Manzhos
and
T.
Carrington
, Jr.
, “
Neural network potential energy surfaces for small molecules and reactions
,”
Chem. Rev.
(published online, 2020).
87.
N.
Artrith
,
T.
Morawietz
, and
J.
Behler
, “
High-dimensional neural network potentials for multicomponent systems: Applications to zinc oxide
,”
Phys. Rev. B
83
,
153101
(
2011
).
88.
T.
Morawietz
and
J.
Behler
, “
A density-functional theory-based neural network potential for water clusters including van der Waals corrections
,”
J. Phys. Chem. A
117
,
7356
(
2013
).
89.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
90.
C.
Schran
,
J.
Behler
, and
D.
Marx
, “
Automated fitting of neural network potentials at coupled cluster Accuracy: Protonated water clusters as testing ground
,”
J. Chem. Theory Comput.
16
,
88
(
2020
).
91.
T. W.
Ko
,
J. A.
Finkler
,
S.
Goedecker
, and
J.
Behler
, “
A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer
,” arXiv:2009.06484 (
2020
).
92.
M.
Gastegger
,
L.
Schwiedrzik
,
M.
Bittermann
,
F.
Berzsenyi
, and
P.
Marquetand
, “
wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials
,”
J. Chem. Phys.
148
,
241709
(
2018
).
93.
G.
Schmitz
,
D. G.
Artiukhin
, and
O.
Christiansen
, “
Approximate high mode coupling potentials using Gaussian process regression and adaptive density guided sampling
,”
J. Chem. Phys.
150
,
131102
(
2019
).
94.
G.
Schmitz
,
I. H.
Godtliebsen
, and
O.
Christiansen
, “
Machine learning for potential energy surfaces: An extensive database and assessment of methods
,”
J. Chem. Phys.
150
,
244113
(
2019
).
95.
G.
Schmitz
,
E. L.
Klinting
, and
O.
Christiansen
, “
A Gaussian process regression adaptive density guided approach for potential energy surface construction
,”
J. Chem. Phys.
153
,
064105
(
2020
).
96.
J.
Zhu
,
V. Q.
Vuong
,
B. G.
Sumpter
, and
S.
Irle
, “
Artificial neural network correction for density-functional tight-binding molecular dynamics simulations
,”
MRS Commun.
9
,
867
(
2019
).
97.
S.
Amabilino
,
L. A.
Bratholm
,
S. J.
Bennie
,
A. C.
Vaucher
,
M.
Reiher
, and
D. R.
Glowacki
, “
Training neural nets to learn reactive potential energy surfaces using interactive quantum chemistry in virtual reality
,”
J. Phys. Chem. A
123
,
4486
(
2019
).
98.
P. O.
Dral
,
A.
Owens
,
S. N.
Yurchenko
, and
W.
Thiel
, “
Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels
,”
J. Chem. Phys.
146
,
244108
(
2017
).
99.
P. O.
Dral
,
M.
Barbatti
, and
W.
Thiel
, “
Nonadiabatic excited-state dynamics with machine learning
,”
J. Phys. Chem. Lett.
9
,
5660
(
2018
).
100.
P. O.
Dral
,
A.
Owens
,
A.
Dral
, and
G.
Csányi
, “
Hierarchical machine learning of potential energy surfaces
,”
J. Chem. Phys.
152
,
204110
(
2020
).
101.
N.
Bernstein
,
G.
Csányi
, and
V. L.
Deringer
, “
De novo exploration and self-guided learning of potential-energy surfaces
,”
npj Comput. Mater.
5
,
99
(
2019
).
102.
C.
van der Oord
,
G.
Dusson
,
G.
Csányi
, and
C.
Ortner
, “
Regularised atomic body-ordered permutation-invariant polynomials for the construction of interatomic potentials
,”
Mach. Learn.: Sci. Technol.
1
,
015004
(
2020
).
103.
A.
Allen
,
G.
Csányi
,
G.
Dusson
, and
C.
Ortner
, “
Atomic permutationally invariant polynomials for fitting molecular force fields
,” arXiv:2010.12200 (
2020
).
104.
D.
Koner
and
M.
Meuwly
, “
Permutationally invariant, reproducing kernel-based potential energy surfaces for polyatomic molecules: From formaldehyde to acetone
,”
J. Chem. Theory Comput.
16
,
5474
(
2020
).
105.
J. D.
Evans
and
F.-X.
Coudert
, “
Predicting the mechanical properties of zeolite frameworks by machine learning
,”
Chem. Mater.
29
,
7833
(
2017
).
106.
O.
Isayev
,
D.
Fourches
,
E. N.
Muratov
,
C.
Oses
,
K.
Rasch
,
A.
Tropsha
, and
S.
Curtarolo
, “
Materials cartography: Representing and mining materials space using structural and electronic fingerprints
,”
Chem. Mater.
27
,
735
(
2015
).
107.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
, “
Machine learning for molecular and materials science
,”
Nature
559
,
547
(
2018
).
108.
V.
Botu
,
R.
Batra
,
J.
Chapman
, and
R.
Ramprasad
, “
Machine learning force fields: Construction, validation, and outlook
,”
J. Phys. Chem. C
121
,
511
(
2017
).
109.
F.
Faber
,
A.
Lindmaa
,
O. A.
von Lilienfeld
, and
R.
Armiento
, “
Machine learning energies of 2 million elpasolite (ABC2D6) crystals
,”
Phys. Rev. Lett.
117
,
135502
(
2016
).
110.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
111.
S.
Chmiela
,
H. E.
Sauceda
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Towards exact molecular dynamics simulations with machine-learned force fields
,”
Nat. Commun.
9
,
3887
(
2018
).
112.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,” arXiv:2010.07067 (
2020
).
113.
Z.
Li
,
J. R.
Kermode
, and
A.
De Vita
, “
Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
,”
Phys. Rev. Lett.
114
,
096405
(
2015
).
114.
F.
Musil
,
S.
De
,
J.
Yang
,
J. E.
Campbell
,
G. M.
Day
, and
M.
Ceriotti
, “
Machine learning for the structure-energy-property landscapes of molecular crystals
,”
Chem. Sci.
9
,
1289
(
2018
).
115.
A.
Bartók
,
J.
Kermode
,
N.
Bernstein
, and
G.
Csányi
, “
Machine learning a general-purpose interatomic potential for silicon
,”
Phys. Rev. X
8
,
041048
(
2018
).
116.
V. L.
Deringer
,
N.
Bernstein
,
A. P.
Bartók
,
M. J.
Cliffe
,
R. N.
Kerber
,
L. E.
Marbella
,
C. P.
Grey
,
S. R.
Elliott
, and
G.
Csányi
, “
Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics
,”
J. Phys. Chem. Lett.
9
,
2879
(
2018
).
117.
N.
Bernstein
,
B.
Bhattarai
,
G.
Csányi
,
D. A.
Drabold
,
S. R.
Elliott
, and
V. L.
Deringer
, “
Quantifying chemical structure and machine-learned atomic energies in amorphous and liquid silicon
,”
Angew. Chem., Int. Ed.
58
,
7057
(
2019
).
118.
M.
Veit
,
S. K.
Jain
,
S.
Bonakala
,
I.
Rudra
,
D.
Hohl
, and
G.
Csányi
, “
Equation of state of fluid methane from first principles with machine learning potentials
,”
J. Chem. Theory Comput.
15
,
2574
(
2019
).
119.
E. V.
Podryabinkin
,
E. V.
Tikhonov
,
A. V.
Shapeev
, and
A. R.
Oganov
, “
Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
,”
Phys. Rev. B
99
,
064114
(
2019
).
120.
D. J.
Cole
,
L.
Mones
, and
G.
Csányi
, “
A machine learning based intramolecular potential for a flexible organic molecule
,”
Faraday Discuss.
2020
,
1359
6640
.
121.
R.
Jinnouchi
,
F.
Karsai
, and
G.
Kresse
, “
On-the-Fly machine learning force field generation: Application to melting points
,”
Phys. Rev. B
100
,
014105
(
2019
).
122.
D. E.
Coupry
,
M. A.
Addicoat
, and
T.
Heine
, “
Extension of the universal force field for metal-organic frameworks
,”
J. Chem. Theory Comput.
12
,
5215
(
2016
).
123.
R.
Haldar
,
K.
Batra
,
S. M.
Marschner
,
A. B.
Kuc
,
S.
Zahn
,
R. A.
Fischer
,
S.
Bräse
,
T.
Heine
, and
C.
Wöll
, “
Bridging the green gap: Metal-organic framework heteromultilayers assembled from porphyrinic linkers identified by using computational screening
,”
Chem.: Eur. J.
25
,
7847
(
2019
).
124.
R.
Jinnouchi
,
K.
Miwa
,
F.
Karsai
,
G.
Kresse
, and
R.
Asahi
, “
On-the-Fly active learning of interatomic potentials for large-scale Atomistic simulations
,”
J. Phys. Chem. Lett.
11
,
6946
(
2020
).
125.
M. F.
Langer
,
A.
Goeßmann
, and
M.
Rupp
, “
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
,” arXiv:2003.12081 (
2020
).
126.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural networks potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
127.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
128.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O.
Anatole von Lilienfeld
, “
Machine learning of molecular electronic properties in chemical compound space
,”
New J. Phys.
15
,
095003
(
2013
).
129.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
,”
J. Phys. Chem. Lett.
6
,
2326
(
2015
).
130.
F. A.
Faber
,
A. S.
Christensen
,
B.
Huang
, and
O. A.
von Lilienfeld
, “
Alchemical and structural distribution based representation for universal quantum machine learning
,”
J. Chem. Phys.
148
,
241717
(
2018
).
131.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
,
D. R.
Glowacki
, and
O. A.
von Lilienfeld
, “
FCHL revisited: Faster and more accurate quantum machine learning
,”
J. Chem. Phys.
152
,
044107
(
2020
).
132.
A. S.
Christensen
and
O. A.
von Lilienfeld
, “
On the role of gradients for machine learning of molecular energies and forces
,”
Mach. Learn.: Sci. Technol.
1
,
045018
(
2020
).
133.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
134.
A. P.
Bartók
,
S.
De
,
C.
Poelking
,
N.
Bernstein
,
J. R.
Kermode
,
G.
Csányi
, and
M.
Ceriotti
, “
Machine learning unifies the modeling of materials and molecules
,”
Sci. Adv.
3
,
e1701816
(
2017
).
135.
A.
Grisafi
and
M.
Ceriotti
, “
Incorporating long-range physics in atomic-scale machine learning
,”
J. Chem. Phys.
151
,
204105
(
2019
).
136.
M. J.
Willatt
,
F.
Musil
, and
M.
Ceriotti
, “
Atom-density representations for machine learning
,”
J. Chem. Phys.
150
,
154110
(
2019
).
137.
L.
Zhu
,
M.
Amsler
,
T.
Fuhrer
,
B.
Schaefer
,
S.
Faraji
,
S.
Rostami
,
S. A.
Ghasemi
,
A.
Sadeghi
,
M.
Grauzinyte
,
C.
Wolverton
, and
S.
Goedecker
, “
A fingerprint based metric for measuring similarities of crystalline structures
,”
J. Chem. Phys.
144
,
034203
(
2016
).
138.
J.
Townsend
,
C. P.
Micucci
,
J. H.
Hymel
,
V.
Maroulas
, and
K. D.
Vogiatzis
, “
Representation of molecular structures with persistent homology for machine learning applications in chemistry
,”
Nat. Commun.
11
,
3230
(
2020
).
139.
B.
Huang
and
O. A.
von Lilienfeld
, “
Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity
,”
J. Chem. Phys.
145
,
161102
(
2016
).
140.
W.
Pronobis
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Many-body descriptors for predicting molecular properties with machine learning: Analysis of pairwise and three-body interactions in molecules
,”
J. Chem. Theory Comput.
14
,
2991
(
2018
).
141.
B.
Huang
and
O. A.
von Lilienfeld
, “
Quantum machine learning using atom-in-molecule-based fragments selected on the fly
,”
Nat. Chem.
12
,
945
(
2020
).
142.
B.
Huang
and
O. A.
von Lilienfeld
, “
Dictionary of 140k GDB and ZINC derived AMONs
,” arXiv:2008.05260 (
2020
).
143.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
, “
Fragmentation methods: A route to accurate calculations on large systems
,”
Chem. Rev.
112
,
632
(
2012
).
144.
O.
Isayev
,
C.
Oses
,
C.
Toher
,
E.
Gossett
,
S.
Curtarolo
, and
A.
Tropsha
, “
Universal fragment descriptors for predicting properties of inorganic crystals
,”
Nat. Commun.
8
,
15679
(
2017
).
145.
M.
Eckhoff
and
J.
Behler
, “
From molecular fragments to the bulk: Development of a neural network potential for MOF-5
,”
J. Chem. Theory Comput.
15
,
3793
(
2019
).
146.
D.
McDonagh
,
C.-K.
Skylaris
, and
G. M.
Day
, “
Machine-learned fragment-based energies for crystal structure prediction
,”
J. Chem. Theory Comput.
15
,
2743
(
2019
).
147.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
(
2017
).
148.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
Approaching coupled cluster Accuracy with a general-purpose neural network potential through transfer learning
,”
Nat. Commun.
10
,
2903
(
2019
).
149.
X.
Chen
,
M. S.
Jørgensen
,
J.
Li
, and
B.
Hammer
, “
Atomic energies from a convolutional neural network
,”
J. Chem. Theory Comput.
14
,
3933
(
2018
).
150.
S. A.
Meldgaard
,
E. L.
Kolsbjerg
, and
B.
Hammer
, “
Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies
,”
J. Chem. Phys.
149
,
134104
(
2018
).
151.
M. S.
Jørgensen
,
H. L.
Mortensen
,
S. A.
Meldgaard
,
E. L.
Kolsbjerg
,
T. L.
Jacobsen
,
K. H.
Sørensen
, and
B.
Hammer
, “
Atomistic structure learning
,”
J. Chem. Phys.
151
,
054111
(
2019
).
152.
O. T.
Unke
and
M.
Meuwly
, “
A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information
,”
J. Chem. Phys.
148
,
241708
(
2018
).
153.
J.
Kang
and
L.-W.
Wang
, “
First-principles green-kubo method for thermal conductivity calculations
,”
Phys. Rev. B
96
,
020302(R)
(
2017
).
154.
Y.
Huang
,
J.
Kang
,
W. A.
Goddard
 III
, and
L.-W.
Wang
, “
Density functional theory based neural network force fields from energy decompositions
,”
Phys. Rev. B
99
,
064103
(
2019
).
155.
J. P.
Perdew
and
K.
Schmidt
, “
Jacob’s ladder of density functional approximations for the exchange-correlation energy
,”
AIP Conf. Proc.
577
,
1
(
2001
).
156.
I.
Mayer
,
I.
Pápai
,
I.
Bakó
, and
Á.
Nagy
, “
Conceptual problem with calculating electron densities in finite basis density functional theory
,”
J. Chem. Theory Comput.
13
,
3961
(
2017
).
157.
M. G.
Medvedev
,
I. S.
Bushmarinov
,
J.
Sun
,
J. P.
Perdew
, and
K. A.
Lyssenko
, “
Density functional theory is straying from the path toward the exact functional
,”
Science
355
,
49
(
2017
).
158.
E.
Sim
,
S.
Song
, and
K.
Burke
, “
Quantifying density errors in DFT
,”
J. Phys. Chem. Lett.
9
,
6385
(
2018
).
159.
C.
Edmiston
and
K.
Ruedenberg
, “
Localized atomic and molecular orbitals
,”
Rev. Mod. Phys.
35
,
457
(
1963
).
160.
S.
Lehtola
and
H.
Jónsson
, “
Unitary optimization of localized molecular orbitals
,”
J. Chem. Theory Comput.
9
,
5365
(
2013
).
161.
K.
Yao
,
J. E.
Herr
,
S. N.
Brown
, and
J.
Parkhill
, “
Intrinsic bond energies from a bonds-in-molecules neural network
,”
J. Phys. Chem. Lett.
8
,
2689
(
2017
).
162.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
163.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
, “
Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes
,”
J. Chem. Phys.
119
,
12129
(
2003
).
164.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
, “
Erratum: “Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes” [J. Chem. Phys. 119, 12129 (2003)]
,”
J. Chem. Phys.
121
,
11507
(
2004
).
165.
L.
Li
and
R. G.
Parr
, “
The atom in a molecule: A density matrix approach
,”
J. Chem. Phys.
84
,
1704
(
1986
).
166.
H.
Ichikawa
and
A.
Yoshida
, “
Complete one- and two-center partitioning scheme for the total energy in the Hartree-Fock theory
,”
Int. J. Quantum Chem.
71
,
35
(
1999
).
167.
I.
Mayer
, “
A chemical energy component analysis
,”
Chem. Phys. Lett.
332
,
381
(
2000
).
168.
I.
Mayer
, “
An exact chemical decomposition scheme for the molecular energy
,”
Chem. Phys. Lett.
382
,
265
(
2003
).
169.
M.
Mandado
,
C.
Van Alsenoy
,
P.
Geerlings
,
F.
De Proft
, and
R. A.
Mosquera
, “
Hartree-Fock energy partitioning in terms of Hirshfeld atoms
,”
Chem. Phys. Chem.
7
,
1294
(
2006
).
170.
M. A.
Blanco
,
A.
Martín Pendás
, and
E.
Francisco
, “
Interacting quantum atoms: A correlated energy decomposition scheme based on the quantum theory of atoms in molecules
,”
J. Chem. Theory Comput.
1
,
1096
(
2005
).
171.
E.
Francisco
,
A.
Martín Pendás
, and
M. A.
Blanco
, “
A molecular energy decomposition scheme for atoms in molecules
,”
J. Chem. Theory Comput.
2
,
90
(
2006
).
172.
R. F.
Nalewajski
and
R. G.
Parr
, “
Information theory, atoms in molecules, and molecular similarity
,”
Proc. Natl. Acad. Sci.
97
,
8879
(
2000
).
173.
R. G.
Parr
,
P. W.
Ayers
, and
R. F.
Nalewajski
, “
What is an atom in a molecule?
,”
J. Phys. Chem. A
109
,
3957
(
2005
).
174.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Atoms in molecules from alchemical perturbation density functional theory
,”
J. Phys. Chem. B
123
,
10073
(
2019
).
175.
H.
Nakai
, “
Energy density analysis with Kohn-Sham orbitals
,”
Chem. Phys. Lett.
363
,
73
(
2002
).
176.
Y.
Kikuchi
,
Y.
Imamura
, and
H.
Nakai
, “
One-body energy decomposition schemes revisited: Assessment of mulliken-, grid-, and conventional energy density analyses
,”
Int. J. Quantum Chem.
109
,
2464
(
2009
).
177.
R. S.
Mulliken
, “
Electronic population analysis on LCAO-MO molecular wave functions. I
,”
J. Chem. Phys.
23
,
1833
(
1955
).
178.
G.
Knizia
, “
Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical concepts
,”
J. Chem. Theory Comput.
9
,
4834
(
2013
).
179.
B.
Senjean
,
S.
Sen
,
M.
Repisky
,
G.
Knizia
, and
L.
Visscher
, “
Generalization of intrinsic orbitals to kramers-paired quaternion spinors, molecular fragments and valence virtual spinors
,” arXiv:2009.08671 (
2020
).
180.
A. S.
Christensen
,
T.
Kubař
,
Q.
Cui
, and
M.
Elstner
, “
Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications
,”
Chem. Rev.
116
,
5301
(
2016
).
181.
S.
Lehtola
and
H.
Jónsson
, “
Pipek-Mezey orbital localization using various partial charge estimates
,”
J. Chem. Theory Comput.
10
,
642
(
2014
).
182.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta
44
,
129
(
1977
).
183.
A. D.
Becke
, “
A multicenter numerical integration scheme for polyatomic molecules
,”
J. Chem. Phys.
88
,
2547
(
1988
).
184.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
, 1st ed. (
Oxford University Press
,
New York, USA
,
1990
).
185.
K.-R.
Müller
,
S.
Mika
,
G.
Rätsch
,
K.
Tsuda
, and
B.
Schölkopf
, “
An introduction to kernel-based learning algorithms
,”
IEEE Trans. Neural Networks
12
,
181
(
2001
).
186.
A. N.
Tikhonov
and
V. Y.
Arsenin
,
Solutions of Ill-Posed Problems
, Scripta Series in Mathematics, 1st ed. (
John Wiley & Sons, Inc.
,
1977
).
187.
See https://github.com/januseriksen/decodense for DECODENSE: A Decomposed Mean-Field Theory Code.
188.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K. L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
189.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
190.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
191.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
(
2008
).
192.
F.
Jensen
, “
Polarization consistent basis sets: Principles
,”
J. Chem. Phys.
115
,
9113
(
2001
).
193.

The reason for this is that the centre of the electronic density associated with a given atom (of which the partial charge is the essential measured quantity) will not necessarily coincide with the corresponding nuclear coordinates, e.g., when constituent atoms carry lone pairs.

194.
A. T. B.
Gilbert
,
N. A.
Besley
, and
P. M. W.
Gill
, “
Self-consistent field calculations of excited states using the maximum overlap method (MOM)
,”
J. Phys. Chem. A
112
,
13164
(
2008
).
195.
M.
Urban
and
A. J.
Sadlej
, “
Molecular electric properties in electronic excited states: Multipole moments and polarizabilities of H2O in the lowest 1B1 and 3B1 excited states
,”
Theor. Chim. Acta
78
,
189
(
1990
).
196.
J.
Páleníková
,
M.
Kraus
,
P.
Neogrády
,
V.
Kellö
, and
M.
Urban
, “
Theoretical study of molecular properties of low-lying electronic excited states of H2O and H2S
,”
Mol. Phys.
106
,
2333
(
2008
).
197.
P.
Sharma
,
V.
Bernales
,
S.
Knecht
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Density matrix renormalization group pair-density functional theory (DMRG-PDFT): Singlet-triplet gaps in polyacenes and polyacetylenes
,”
Chem. Sci.
10
,
1716
(
2016
).
198.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
199.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
(
1972
).
200.
E. M.
Woerly
,
J.
Roy
, and
M. D.
Burke
, “
Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction
,”
Nat. Chem.
6
,
484
(
2014
).
201.
D.
Ghosh
,
J.
Hachmann
,
T.
Yanai
, and
G. K.-L.
Chan
, “
Orbital optimization in the density matrix renormalization group, with applications to polyenes and β-carotene
,”
J. Chem. Phys.
128
,
144117
(
2008
).
202.
J. M.
Foster
and
S. F.
Boys
, “
Canonical configurational interaction procedure
,”
Rev. Mod. Phys.
32
,
300
(
1960
).
203.
J.
Pipek
and
P. G.
Mezey
, “
A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions
,”
J. Chem. Phys.
90
,
4916
(
1989
).
204.

In the iterative optimization of IBOs used in the present work, a PM localization power (p = 2) has been used throughout, cf. Appendix D of Ref. 178.

205.
M. H.
Garner
,
R.
Hoffmann
,
S.
Rettrup
, and
G. C.
Solomon
, “
Coarctate and möbius: The helical orbitals of allene and other cumulenes
,”
ACS Cent. Sci.
4
,
688
(
2018
).
206.
M. H.
Garner
,
A.
Jensen
,
L. O. H.
Hyllested
, and
G. C.
Solomon
, “
Helical orbitals and circular currents in linear carbon wires
,”
Chem. Sci.
10
,
4598
(
2019
).
207.
M. H.
Garner
,
W.
Bro-Jørgensen
, and
G. C.
Solomon
, “
Three distinct torsion profiles of electronic transmission through linear carbon wires
,”
J. Phys. Chem. C
124
,
18968
(
2020
).
208.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
209.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
(
1994
).
210.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
(
1999
).
211.
See https://seaborn.pydata.org/index.html for seaborn, Statistical Data Visualization.
212.
L.
Cheng
,
M.
Welborn
,
A. S.
Christensen
, and
T. F.
Miller
 III
, Thermalized (350K) QM7b, GDB-13, Water, and Short Alkane Quantum Chemistry Dataset Including MOB-ML Features,
2019
, https://data.caltech.edu/records/1177.
213.
A. S.
Christensen
and
O. A.
von Lilienfeld
, The Water40 10K Dataset,
2019
, https://figshare.com/articles/dataset/Water40_10K/8058497.
214.
W.
Gerrard
,
L. A.
Bratholm
,
M. J.
Packer
,
A. J.
Mulholland
,
D. R.
Glowacki
, and
C. P.
Butts
, “
IMPRESSION: Prediction of NMR parameters for 3-dimensional chemical structures using machine learning with near quantum chemical accuracy
,”
Chem. Sci.
11
,
508
(
2020
).
215.
A.
Gupta
,
S.
Chakraborty
, and
R.
Ramakrishnan
, “
Revving up 13C NMR shielding predictions across chemical space: Benchmarks for atoms-in-molecules kernel machine learning with new data for 134 kilo molecules
,” arXiv:2009.06814 (
2020
).
216.
A. S.
Christensen
,
F. A.
Faber
,
B.
Huang
,
L. A.
Bratholm
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, QML: A Python Toolkit for Quantum Machine Learning, see https://github.com/qmlcode/qml.
217.

The choice of IAO over Mulliken partial charges are justified in Fig. S6 of the supplementary material, in which the former are shown to vary continuously along the symmetric stretch in H2O while also giving rise to smoothly varying atom-RDM1s.

218.
J.
Olsen
,
P.
Jørgensen
,
H.
Koch
,
A.
Balkova
, and
R. J.
Bartlett
, “
Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions
,”
J. Chem. Phys.
104
,
8007
(
1996
).
219.
G. K.-L.
Chan
and
M.
Head-Gordon
, “
Exact solution (within a triple-zeta, double polarization basis set) of the electronic schrödinger equation for water
,”
J. Chem. Phys.
118
,
8551
(
2003
).
220.
K.
Yao
,
J. E.
Herr
,
D. W.
Toth
,
R.
Mckintyre
, and
J.
Parkhill
, “
The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics
,”
Chem. Sci.
9
,
2261
(
2018
).
221.
X.
Gao
,
F.
Ramezanghorbani
,
O.
Isayev
,
J. S.
Smith
, and
A. E.
Roitberg
, “
TorchANI: A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials
,”
J. Chem. Inf. Model.
60
,
3408
(
2020
).
222.
M.
Gastegger
,
J.
Behler
, and
P.
Marquetand
, “
Machine learning molecular dynamics for the simulation of infrared spectra
,”
Chem. Sci.
8
,
6924
(
2017
).
223.
F.
Pereira
and
J.
Aires-de Sousa
, “
Machine learning for the prediction of molecular dipole moments obtained by density functional theory
,”
J. Cheminformatics
10
,
43
(
2018
).
224.
A. S.
Christensen
,
F. A.
Faber
, and
O. A.
von Lilienfeld
, “
Operators in quantum machine learning: Response properties in chemical space
,”
J. Chem. Phys.
150
,
064105
(
2019
).
225.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
, “
Symmetry-adapted machine learning for tensorial properties of atomistic systems
,”
Phys. Rev. Lett.
120
,
036002
(
2018
).
226.
D. M.
Wilkins
,
A.
Grisafi
,
Y.
Yang
,
K. U.
Lao
,
R. A.
DiStasio
, Jr.
, and
M.
Ceriotti
, “
Accurate molecular polarizabilities with coupled cluster theory and machine learning
,”
Proc. Natl. Acad. Sci.
116
,
3401
(
2019
).
227.
M.
Veit
,
D. M.
Wilkins
,
Y.
Yang
,
R. A.
DiStasio
, Jr.
, and
M.
Ceriotti
, “
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
,”
J. Chem. Phys.
153
,
024113
(
2020
).
228.
B.
Parsaeifard
,
D. S.
De
,
A. S.
Christensen
,
F. A.
Faber
,
E.
Kocer
,
S.
De
,
J.
Behler
,
A.
von Lilienfeld
, and
S.
Goedecker
, “
An assessment of the structural resolution of various fingerprints commonly used in machine learning
,”
Mach. Learn.: Sci. Technol.
(published online).
229.
A.
Glielmo
,
C.
Zeni
, and
A.
De Vita
, “
Efficient nonparametric n-body force fields from machine learning
,”
Phys. Rev. B
97
,
184307
(
2018
).
230.
R.
Jinnouchi
,
F.
Karsai
,
C.
Verdi
,
R.
Asahi
, and
G.
Kresse
, “
Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials
,”
J. Chem. Phys.
152
,
234102
(
2020
).
231.
S. N.
Pozdnyakov
,
M. J.
Willatt
,
A. P.
Bartók
,
C.
Ortner
,
G.
Csányi
, and
M.
Ceriotti
, “
Incompleteness of atomic structure representations
,”
Phys. Rev. Lett.
125
,
166001
(
2020
).
232.
O. A.
von Lilienfeld
,
R.
Ramakrishnan
,
M.
Rupp
, and
A.
Knoll
, “
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
,”
Int. J. Quantum Chem.
115
,
1084
(
2015
).
233.
A.
Goscinski
,
G.
Fraux
, and
M.
Ceriotti
, “
The role of feature space in atomistic learning
,” arXiv:2009.02741 (
2020
).
234.
G.
Carleo
and
M.
Troyer
, “
Solving the quantum many-body problem with artificial neural networks
,”
Science
355
,
602
(
2017
).
235.
G.
Carleo
,
Y.
Nomura
, and
M.
Imada
, “
Constructing exact representations of quantum many-body systems with deep neural networks
,”
Nat. Commun.
9
,
5322
(
2018
).
236.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Quantum-chemical insights from deep tensor neural networks
,”
Nat. Commun.
8
,
13890
(
2017
).
237.
K. T.
Schütt
,
M.
Gastegger
,
A.
Tkatchenko
,
K.-R.
Müller
, and
R. J.
Maurer
, “
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
,”
Nat. Commun.
10
,
5024
(
2019
).
238.
M.
Gastegger
,
A.
McSloy
,
M.
Luya
,
K. T.
Schütt
, and
R. J.
Maurer
, “
A deep neural network for molecular wave functions in quasi-atomic minimal basis representation
,”
J. Chem. Phys.
153
,
044123
(
2020
).
239.
N.
Lubbers
,
J. S.
Smith
, and
K.
Barros
, “
Hierarchical modeling of molecular energies using a deep neural network
,”
J. Chem. Phys.
148
,
241715
(
2018
).
240.
K. T.
Schütt
,
P.-J.
Kindermans
,
H. E.
Sauceda
,
S.
Chmiela
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
,”
Adv. Neural Inf. Process. Syst.
30
,
1
(
2017
).
241.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet: A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
242.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
(
2019
).
243.
R.
Zubatyuk
,
J. S.
Smith
,
J.
Leszczynski
, and
O.
Isayev
, “
Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network
,”
Sci. Adv.
5
,
eaav6490
(
2019
).
244.
K. T.
Schütt
,
P.
Kessel
,
M.
Gastegger
,
K. A.
Nicoli
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNetPack: A deep learning toolbox for atomistic systems
,”
J. Chem. Theory Comput.
15
,
448
(
2019
).
245.
B.
Anderson
,
T. S.
Hy
, and
R.
Kondor
, in
Advances in Neural Information Processing Systems
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alché-Buc
,
E.
Fox
, and
R.
Garnett
(
2019
), Vol. 32, p.
14537
.
246.
J.
Klicpera
,
J.
Groß
, and
S.
Günnemann
, “
Directional message passing for molecular graphs
,” arXiv:2003.03123 (
2020
).
247.
B. K.
Miller
,
M.
Geiger
,
T. E.
Smidt
, and
F.
Noé
, “
Relevance of rotationally equivariant convolutions for predicting molecular properties
,” arXiv:2008.08461 (
2020
).
248.
T. E.
Smidt
, “
Euclidean symmetry and equivariance in machine learning
,” chemRxiv:12935198.v1 (
2020
).
249.
M.
Welborn
,
L.
Cheng
, and
T. F.
Miller
 III
, “
Transferability in machine learning for electronic structure via the molecular orbital basis
,”
J. Chem. Theory Comput.
14
,
4772
(
2018
).
250.
L.
Cheng
,
M.
Welborn
,
A. S.
Christensen
, and
T. F.
Miller
 III
, “
A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules
,”
J. Chem. Phys.
150
,
131103
(
2019
).
251.
L.
Cheng
,
N. B.
Kovachki
,
M.
Welborn
, and
T. F.
Miller
 III
, “
Regression-clustering for improved accuracy and training cost with molecular-orbital-based machine learning
,”
J. Chem. Theory Comput.
15
,
6668
(
2019
).
252.
T.
Husch
,
J.
Sun
,
L.
Cheng
,
S. J. R.
Lee
, and
T. F.
Miller
 III
, “
Improved accuracy and transferability of molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states
,” arXiv:2010.03626 (
2020
).
253.
Y.
Chen
,
L.
Zhang
,
H.
Wang
, and
W.
E
, “
Ground state energy functional with Hartree-Fock efficiency and chemical accuracy
,”
J. Phys. Chem. A
124
,
7155
(
2020
).
254.
S.
Grimme
,
C.
Bannwarth
, and
P.
Shushkov
, “
A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parameterized for all SPD-block elements (Z = 1 − 86)
,”
J. Chem. Theory Comput.
13
,
1989
(
2017
).
255.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
, “
GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
,”
J. Chem. Theory Comput.
15
,
1652
(
2019
).
256.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
, “
Extended tight-binding quantum chemistry methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2020
,
e01493
.
257.
Z.
Qiao
,
M.
Welborn
,
A.
Anandkumar
,
F. R.
Manby
, and
T. F.
Miller
 III
, “
OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features
,”
J. Chem. Phys.
153
,
124111
(
2020
).
258.
V.
Parasuk
,
J.
Almlöf
, and
M. W.
Feyereisen
, “
The [18] all-carbon molecule: Cumulene or polyacetylene?
,”
J. Am. Chem. Soc.
113
,
1049
(
1991
).
259.
D. A.
Plattner
and
K. N.
Houk
, “
C18 is a Polyyne
,”
J. Am. Chem. Soc.
117
,
4405
(
1995
).
260.
C.
Neiss
,
E.
Trushin
, and
A.
Görling
, “
The nature of one-dimensional carbon: Polyynic versus cumulenic
,”
ChemPhysChem
15
,
2497
(
2014
).
261.
K.
Kaiser
,
L. M.
Scriven
,
F.
Schulz
,
P.
Gawel
,
L.
Gross
, and
H. L.
Anderson
, “
An sp-hybridized molecular carbon allotrope, cyclo[18]carbon
,”
Science
365
,
1299
(
2019
).
262.
É.
Brémond
,
Á. J.
Pérez-Jiménez
,
C.
Adamo
, and
J. C.
Sancho-García
, “
sp-hybridized carbon allotrope molecular structures: An ongoing challenge for density-functional approximations
,”
J. Chem. Phys.
151
,
211104
(
2019
).
263.
G. V.
Baryshnikov
,
R. R.
Valiev
,
A. V.
Kuklin
,
D.
Sundholm
, and
H.
Ågren
, “
Cyclo[18]carbon: Insight into electronic structure, aromaticity, and surface coupling
,”
J. Phys. Chem. Lett.
10
,
6701
(
2019
).
264.
A. J.
Stasyuk
,
O. A.
Stasyuk
,
M.
Solà
, and
A. A.
Voityuk
, “
Cyclo[18]carbon: The smallest all-carbon electron acceptor
,”
Chem. Commun.
56
,
352
(
2020
).
265.
A. E.
Raeber
and
D. A.
Mazziotti
, “
Non-equilibrium steady state conductivity in cyclo[18]carbon and its boron nitride analogue
,”
Phys. Chem. Chem. Phys.
22
,
23998
(
2020
).
266.
G. C.
Solomon
,
D. Q.
Andrews
,
T.
Hansen
,
R. H.
Goldsmith
,
M. R.
Wasielewski
,
R. P.
Van Duyne
, and
M. A.
Ratner
, “
Understanding quantum interference in coherent molecular conduction
,”
J. Chem. Phys.
129
,
054701
(
2008
).
267.
G. C.
Solomon
,
C.
Herrmann
,
T.
Hansen
,
V.
Mujica
, and
M. A.
Ratner
, “
Exploring local currents in molecular junctions
,”
Nat. Chem.
2
,
223
(
2010
).
268.
G. C.
Solomon
, “
Interfering with interference
,”
Nat. Chem.
7
,
621
(
2015
).
269.
N.
Gorczak
,
N.
Renaud
,
S.
Tarkuç
,
A. J.
Houtepen
,
R.
Eelkema
,
L. D. A.
Siebbeles
, and
F. C.
Grozema
, “
Charge transfer versus molecular conductance: Molecular orbital symmetry turns quantum interference rules upside down
,”
Chem. Sci.
6
,
4196
(
2015
).
270.
E.
Maggio
,
N.
Martsinovich
, and
A.
Troisi
, “
Using orbital symmetry to minimize charge recombination in dye-sensitized solar cells
,”
Angew. Chem., Int. Ed.
52
,
973
(
2013
).
271.
C. H.
Hendon
,
D.
Tiana
,
A. T.
Murray
,
D. R.
Carbery
, and
A.
Walsh
, “
Helical frontier orbitals of conjugated linear molecules
,”
Chem. Sci.
4
,
4278
(
2013
).
272.
J. A.
Januszewski
and
R. R.
Tykwinski
, “
Synthesis and properties of long [n]Cumulenes (n ≥ 5)
,”
Chem. Soc. Rev.
43
,
3184
(
2014
).
273.
Y.
Tsuji
,
R.
Movassagh
,
S.
Datta
, and
R.
Hoffmann
, “
Exponential attenuation of through-bond transmission in a polyene: Theory and potential realizations
,”
ACS Nano
9
,
11109
(
2015
).
274.
Y.
Tsuji
,
R.
Hoffmann
,
M.
Strange
, and
G. C.
Solomon
, “
Close relation between quantum interference in molecular conductance and diradical existence
,”
Proc. Natl. Acad. Sci.
113
,
E413
(
2016
).
275.
M. H.
Garner
,
W.
Bro-Jørgensen
,
P. D.
Pedersen
, and
G. C.
Solomon
, “
Reverse bond-length alternation in cumulenes: Candidates for increasing electronic transmission with length
,”
J. Phys. Chem. C
122
,
26777
(
2018
).
276.
A.
Jensen
,
M. H.
Garner
, and
G. C.
Solomon
, “
When current does not follow bonds: Current density in saturated molecules
,”
J. Phys. Chem. C
123
,
12042
(
2019
).
277.
M. H.
Garner
and
G. C.
Solomon
, “
Simultaneous suppression of π- and σ-transmission in π-conjugated molecules
,”
J. Phys. Chem. Lett.
11
,
7400
(
2020
).

Supplementary Material

You do not currently have access to this content.