Unitary coupled cluster (UCC), originally developed as a variational alternative to the popular traditional coupled cluster method, has seen a resurgence as a functional form for use on quantum computers. However, the number of excitors present in the Ansatz often presents a barrier to implementation on quantum computers. Given the natural sparsity of wavefunctions obtained from quantum Monte Carlo methods, we consider here a stochastic solution to the UCC problem. Using the coupled cluster Monte Carlo framework, we develop cluster selection schemes that capture the structure of the UCC wavefunction, as well as its Trotterized approximation, and use these to solve the corresponding projected equations. Due to the fast convergence of the equations with order in the cluster expansion, this approach scales polynomially with the size of the system. Unlike traditional UCC implementations, our approach naturally produces a non-variational estimator for the energy in the form of the projected energy. For unitary coupled cluster singles and doubles (UCCSD) in small systems, we find that this agrees well with the expectation value of the energy and, in the case of two electrons, with full configuration interaction results. For the larger N2 system, the two estimators diverge, with the projected energy approaching the coupled cluster result, while the expectation value is close to results from traditional UCCSD.

1.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
2.
J.
Čížek
,
Adv. Chem. Phys.
14
,
35
(
1969
).
3.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
4.
G. K.-L.
Chan
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
121
,
6110
(
2004
).
5.
P. G.
Szalay
,
M.
Nooijen
, and
R. J.
Bartlett
,
J. Chem. Phys.
103
,
281
(
1995
).
6.
R. J.
Bartlett
and
J.
Noga
,
Chem. Phys. Lett.
150
,
29
(
1988
).
7.
T.
Van Voorhis
and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
8873
(
2000
).
9.
W.
Kutzelnigg
,
J. Chem. Phys.
77
,
3081
(
1982
).
10.
W.
Kutzelnigg
and
S.
Koch
,
J. Chem. Phys.
79
,
4315
(
1983
).
11.
W.
Kutzelnigg
,
J. Chem. Phys.
80
,
822
(
1984
).
12.
K.
Tanaka
and
H.
Terashima
,
Chem. Phys. Lett.
106
,
558
(
1984
).
13.
M. R.
Hoffmann
and
J.
Simons
,
Chem. Phys. Lett.
142
,
451
(
1987
).
14.
M. R.
Hoffmann
and
J.
Simons
,
J. Chem. Phys.
88
,
993
(
1988
).
15.
R. J.
Bartlett
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
155
,
133
(
1989
).
16.
E.
Farhi
,
J.
Goldstone
,
S.
Gutmann
,
J.
Lapan
,
A.
Lundgren
, and
D.
Preda
,
Science
292
,
472
,
0104129
(
2001
).
17.
A.
Aspuru-Guzik
,
A. D.
Dutoi
,
P. J.
Love
, and
M.
Head-Gordon
,
Science
309
,
1704
(
2005
).
18.
J. D.
Whitfield
,
J.
Biamonte
, and
A.
Aspuru-Guzik
,
Mol. Phys.
109
,
735
(
2011
).
19.
J. B.
Anderson
,
J. Chem. Phys.
63
,
1499
(
1975
).
20.
D.
Ceperley
and
B.
Alder
,
Science
231
,
555
(
1986
).
21.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
22.
A. Y.
Kitaev
, “
Quantum measurements and the abelian stabilizer problem
,” arXiv:quant-ph/9511026 (
1995
).
23.
D. S.
Abrams
and
S.
Lloyd
,
Phys. Rev. Lett.
83
,
5162
(
1999
).
24.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M. H.
Yung
,
X. Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O’Brien
,
Nat. Commun.
5
,
4213
(
2014
).
25.
J. R.
McClean
,
J.
Romero
,
R.
Babbush
, and
A.
Aspuru-Guzik
,
New J. Phys.
18
,
023023
(
2016
).
26.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
,
M.
Degroote
,
P. D.
Johnson
,
M.
Kieferová
,
I. D.
Kivlichan
,
T.
Menke
,
B.
Peropadre
,
N. P. D.
Sawaya
,
S.
Sim
,
L.
Veis
, and
A.
Aspuru-Guzik
,
Chem. Rev.
119
,
10856
(
2019
).
27.
J.
Romero
,
R.
Babbush
,
J. R.
Mcclean
,
C.
Hempel
,
P. J.
Love
, and
A.
Aspuru-Guzik
,
Quantum Sci. Technol.
4
,
014008
(
2019
).
28.
A. J. W.
Thom
,
Phys. Rev. Lett.
105
,
263004
(
2010
).
29.
J. E.
Deustua
,
J.
Shen
, and
P.
Piecuch
,
Phys. Rev. Lett.
119
,
223003
(
2017
).
30.
J. E.
Deustua
,
I.
Magoulas
,
J.
Shen
, and
P.
Piecuch
,
J. Chem. Phys.
149
,
151101
(
2018
).
31.
J. E.
Deustua
,
S. H.
Yuwono
,
J.
Shen
, and
P.
Piecuch
,
J. Chem. Phys.
150
,
111101
(
2019
).
32.
J. E.
Campbell
,
Proc. London Math. Soc.
s1-28
,
381
(
1896
).
33.
H. F.
Baker
,
Proc. London Math. Soc.
s2-3
,
24
(
1905
).
34.
F.
Hausdorff
,
Ber. uber Verhandlungen Sachsischen Akad. Wiss. Leipz. Mathematisch-Naturwissenschaftliche Kl.
58
,
19
(
1906
).
35.
S.
Pal
,
Theor. Chim. Acta
66
,
207
(
1984
).
36.
H. F.
Trotter
,
Proc. Am. Math. Soc.
10
,
545
(
1959
).
37.
M.
Suzuki
,
Commun. Math. Phys.
51
,
183
(
1976
).
38.
F. A.
Evangelista
,
G. K.-L.
Chan
, and
G. E.
Scuseria
,
J. Chem. Phys.
151
,
244112
(
2019
).
39.
J. S.
Spencer
and
A. J. W.
Thom
,
J. Chem. Phys.
144
,
084108
(
2016
).
40.
C. J. C.
Scott
and
A. J. W.
Thom
,
J. Chem. Phys.
147
,
124105
(
2017
).
41.
R. S. T.
Franklin
,
J. S.
Spencer
,
A.
Zoccante
, and
A. J. W.
Thom
,
J. Chem. Phys.
144
,
044111
(
2016
).
42.
J. S.
Spencer
,
V. A.
Neufeld
,
W. A.
Vigor
,
R. S. T.
Franklin
, and
A. J. W.
Thom
,
J. Chem. Phys.
149
,
204103
(
2018
).
43.
A. A.
Holmes
,
H. J.
Changlani
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
12
,
1561
(
2016
).
44.
V. A.
Neufeld
and
A. J. W.
Thom
,
J. Chem. Theory Comput.
15
,
127
(
2019
).
45.
C. J. C.
Scott
,
R.
Di Remigio
,
T. D.
Crawford
, and
A. J. W.
Thom
,
J. Phys. Chem. Lett.
10
,
925
(
2019
).
46.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
(
Cambridge University Press
,
2009
).
47.
J. S.
Spencer
,
N. S.
Blunt
,
S.
Choi
,
J.
Etrych
,
M.-A.
Filip
,
W. M. C.
Foulkes
,
R. S. T.
Franklin
,
W. J.
Handley
,
F. D.
Malone
,
V. A.
Neufeld
 et al,
J. Chem. Theory Comput.
15
,
1728
(
2019
).
48.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
49.
W. J.
Hehre
,
R. F.
Stewart
, and
J. A.
Pople
,
J. Chem. Phys.
51
,
2657
(
1969
).
50.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
).
51.
B.
Cooper
and
P. J.
Knowles
,
J. Chem. Phys.
133
,
234102
(
2010
).

Supplementary Material

You do not currently have access to this content.