Progress toward quantum technologies continues to provide essential new insights into the microscopic dynamics of systems in phase space. This highlights coherence effects whether these are due to ultrafast lasers whose energy width spans several states all the way to the output of quantum computing. Surprisal analysis has provided seminal insights into the probability distributions of quantum systems from elementary particle and also nuclear physics through molecular reaction dynamics to system biology. It is therefore necessary to extend surprisal analysis to the full quantum regime where it characterizes not only the probabilities of states but also their coherence. In principle, this can be done by the maximal entropy formalism, but in the full quantum regime, its application is far from trivial [S. Dagan and Y. Dothan, Phys. Rev. D 26, 248 (1982)] because an exponential function of non-commuting operators is not easily accommodated. Starting from an exact dynamical approach, we develop a description of the dynamics where the quantum mechanical surprisal, a linear combination of operators, plays a central role. We provide an explicit route to the Lagrange multipliers of the system and identify those operators that act as the dominant constraints.

1.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
Boca Raton
,
2009
).
2.
S.
Mukamel
,
Principle of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
Oxford
,
1995
).
3.
E. T.
Jaynes
, “
Information theory and statistical mechanics
,”
Phys. Rev.
106
,
620
(
1957
).
4.
A.
Katz
,
Principles of Statistical Mechanics: The Information Theory Approach
(
Freeman
,
San Francisco
,
1967
).
5.
D. N.
Zubarev
,
Nonequilibrium Statistical Mechanics
(
Consultants Bureau
,
London
,
1974
).
6.
C.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
(
1948
).
7.
E. H.
Wichmann
, “
Density matrices arising from incomplete measurements
,”
J. Math. Phys.
4
,
884
896
(
1963
).
8.
B.
Schumacher
, “
Quantum coding
,”
Phys. Rev. A
51
,
2738
(
1995
).
9.
S.
Dagan
and
Y.
Dothan
, “
Evaluation of an incompletely measured spin density matrix
,”
Phys. Rev. D
26
,
248
(
1982
).
10.
Y.
Alhassid
and
R. D.
Levine
, “
Collision experiments with partial resolution of final states: Maximum entropy procedure and surprisal analysis
,”
Phys. Rev. C
20
,
1775
(
1979
).
11.
R. D.
Levine
, “
Information theory approach to molecular reaction dynamics
,”
Annu. Rev. Phys. Chem.
29
,
59
(
1978
).
12.
F.
Remacle
,
N.
Kravchenko-Balasha
,
A.
Levitzki
, and
R. D.
Levine
, “
Information-theoretic analysis of phenotype changes in early stages of carcinogenesis
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
10324
(
2010
).
13.
S.
Zadran
,
R.
Arumugam
,
H.
Herschman
,
M. E.
Phelps
, and
R. D.
Levine
, “
Surprisal analysis characterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
13235
(
2014
).
14.
N.
Kravchenko-Balasha
,
J.
Wang
,
F.
Remacle
,
R. D.
Levine
, and
J. R.
Heath
, “
Glioblastoma cellular architectures are predicted through the characterization of two-cell interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
6521
(
2014
).
15.
R. B.
Bernstein
and
R. D.
Levine
, “
Entropy and chemical change. I. Characterization of product (and reactant) energy distributions in reactive molecular collisions: Information and entropy deficiency
,”
J. Chem. Phys.
57
,
434
449
(
1972
).
16.
R. D.
Levine
and
R. B.
Bernstein
, “
Energy disposal and energy consumption in elementary chemical reactions. Information theoretic approach
,”
Acc. Chem. Res.
7
,
393
400
(
1974
).
17.
R. D.
Levine
and
C. E.
Wulfman
, “
On the group-theoretical formulation for the time evolution of stochastic processes
,”
Physica A
141
,
489
(
1987
).
18.
J. L.
Kinsey
, “
Microscopic reversibility for rates of chemical reactions carried out with partial resolution of the product and reactant states
,”
J. Chem. Phys.
54
,
1206
1217
(
1971
).
19.
R. D.
Levine
, “
Addressing the challenge of molecular change: An interim report
,”
Annu. Rev. Phys. Chem.
69
,
1
21
(
2018
).
20.
J.
von Neumann
,
Mathematical Foundations of Quantum Mechanics
(
Princeton University Press
,
Princeton
,
1955
).
21.
E. C.
Kemble
, “
The quantum-mechanical basis of statistical mechanics
,”
Phys. Rev.
56
,
1146
(
1939
).
22.
W. M.
Elsasser
, “
On quantum measurements and the role of the uncertainty relations in statistical mechanics
,”
Phys. Rev.
52
,
987
(
1937
).
23.
U.
Fano
, “
Description of states in quantum mechanics by density matrix and operator techniques
,”
Rev. Mod. Phys.
29
,
74
(
1957
).
24.
J.
Wei
and
E.
Norman
, “
On global representations of the solutions of linear differential equations as a product of exponentials
,”
Proc. Am. Math. Soc.
15
,
327
334
(
1964
).
25.
Z.
Bacić
and
J. C.
Light
, “
Highly excited vibrational levels of ‘floppy’ triatomic molecules: A discrete variable representation—Distributed Gaussian basis approach
,”
J. Chem. Phys.
85
,
4594
(
1986
).
26.
J. C.
Light
and
T.
Carrington
, Jr.
, “
Discrete-variable representations and their utilization
,” in
Advances in Chemical Physics
, edited by
I.
Prigogine
and
S. A.
Rice
(
Wiley
,
New York
,
2000
), Vol. 114, p.
263
.
27.
R.
Kosloff
, “
Time-dependent quantum-mechanical methods for molecular dynamics
,”
J. Phys. Chem.
92
,
2087
(
1988
).
28.
E. J.
Heller
, “
Time-dependent approach to semiclassical dynamics
,”
J. Chem. Phys.
62
,
1544
(
1975
).
29.
G. H.
Golub
and
C. F. V.
Loan
,
Matrix Computations
, 3rd ed. (
John Hopkins University Press
,
Baltimore
,
1996
).
30.
R. D.
Levine
, “
Thermodynamic functions for state-selected chemical reactions
,”
Chem. Phys. Lett.
39
,
205
(
1976
).
31.
K.
Komarova
,
H.
Gattuso
,
R. D.
Levine
, and
F.
Remacle
, “
Quantum device emulates the dynamics of two coupled oscillators
,”
J. Phys. Chem. Lett.
11
,
6990
(
2020
).
32.
Y.
Alhassid
and
R. D.
Levine
, “
Connection between the maximal entropy and the scattering theoretic analyses of collision processes
,”
Phys. Rev. A
18
,
89
(
1978
).
33.
M.
Nielsen
and
I.
Chuang
,
Quantum Computation and Quantum Information
, 10th Anniversary ed. (
Cambridge University Press
,
New York, USA
,
2010
).
34.
J.
Paldus
, “
Group theoretical approach to the configuration interaction and perturbation theory calculations for atomic and molecular systems
,”
J. Chem. Phys.
61
,
5321
(
1974
).
35.
J.
Hinze
,
The Unitary Group for the Evaluation of Electronic Energy Matrix Elements
(
Springer-Verlag Berlin
,
Heidelberg
,
1981
).
36.
R.
Schneider
and
W.
Domcke
, “
S1-S2 conical intersection and ultrafast S2 → S1 internal conversion in pyrazine
,”
Chem. Phys. Lett.
150
,
235
(
1988
).
37.
N.
Agmon
,
Y.
Alhassid
, and
R. D.
Levine
, “
An algorithm for finding the distribution of maximal entropy
,”
J. Comput. Phys.
30
,
250
(
1979
).
38.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, “
Multimode molecular dynamics beyond the Born–Oppenheimer approximation
,” in
Advances in Chemical Physics
, edited by
I.
Prigogine
and
S. A.
Rice
(
Wiley
,
New York
,
1984
), Vol. 57, p.
59
.
39.
Y.
Su
,
D.
Chen
,
C.
Lausted
,
D.
Yuan
,
J.
Choi
,
C.
Dai
,
V.
Voillet
,
K.
Scherler
,
P.
Troisch
,
V. R.
Duvvuri
,
P.
Baloni
,
G.
Qin
,
B.
Smith
,
S.
Kornilov
,
C.
Rostomily
,
A.
Xu
,
J.
Li
,
S.
Dong
,
A.
Rothchild
,
J.
Zhou
,
K.
Murray
,
R.
Edmark
,
S.
Hong
,
L.
Jones
,
Y.
Zhou
,
R.
Roper
,
S.
Mackay
,
D. S.
O’Mahony
,
C. R.
Dale
,
J. A.
Wallick
,
H. A.
Algren
,
Z. A.
Michael
,
A.
Magis
,
W.
Wei
,
N. D.
Price
,
S.
Huang
,
N.
Subramanian
,
K.
Wang
,
J.
Hadlock
,
L.
Hood
,
A.
Aderem
,
J. A.
Bluestone
,
L. L.
Lanier
,
P.
Greenberg
,
R.
Gottardo
,
M. M.
Davis
,
J. D.
Goldman
, and
J. R.
Heath
, “
Multiomic immunophenotyping of COVID-19 patients reveals early infection trajectories
,” bioRxiv:10.1101/2020.07.27.224063.

Supplementary Material

You do not currently have access to this content.