Biological membranes have been prominent targets for coarse-grained (CG) molecular dynamics simulations. While minimal CG lipid models with three beads per lipid and quantitative CG lipid models with >10 beads per lipid have been well studied, in between them, CG lipid models with a compatible resolution to residue-level CG protein models are much less developed. Here, we extended a previously developed three-bead lipid model into a five-bead model and parameterized it for two phospholipids, POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine). The developed model, iSoLF, reproduced the area per lipid, hydrophobic thickness, and phase behaviors of the target phospholipid bilayer membranes at the physiological temperature. The model POPC and DPPC membranes were in liquid and gel phases, respectively, in accordance with experiments. We further examined the spontaneous formation of a membrane bilayer, the temperature dependence of physical properties, the vesicle dynamics, and the POPC/DPPC two-component membrane dynamics of the CG lipid model, showing some promise. Once combined with standard Cα protein models, the iSoLF model will be a powerful tool to simulate large biological membrane systems made of lipids and proteins.

1.
J. L.
Klepeis
,
K.
Lindorff-Larsen
,
R. O.
Dror
, and
D. E.
Shaw
,
Curr. Opin. Struct. Biol.
19
,
120
(
2009
).
2.
M. C.
Zwier
and
L. T.
Chong
,
Curr. Opin. Pharmacol.
10
,
745
(
2010
).
3.
D. J.
Huggins
,
P. C.
Biggin
,
M. A.
Dämgen
,
J. W.
Essex
,
S. A.
Harris
,
R. H.
Henchman
,
S.
Khalid
,
A.
Kuzmanic
,
C. A.
Laughton
,
J.
Michel
,
A. J.
Mulholland
,
E.
Rosta
,
M. S. P.
Sansom
, and
M. W.
van der Kamp
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1393
(
2019
).
4.
S.
Takada
,
Curr. Opin. Struct. Biol.
22
,
130
(
2012
).
5.
S. V.
Bennun
,
M. I.
Hoopes
,
C.
Xing
, and
R.
Faller
,
Chem. Phys. Lipids
159
,
59
(
2009
).
6.
S.
Kmiecik
,
D.
Gront
,
M.
Kolinski
,
L.
Wieteska
,
A. E.
Dawid
, and
A.
Kolinski
,
Chem. Rev.
116
,
7898
(
2016
).
7.
J.
Kleinjung
and
F.
Fraternali
,
Curr. Opin. Struct. Biol.
25
,
126
(
2014
).
8.
R.
Goetz
and
R.
Lipowsky
,
J. Chem. Phys.
108
,
7397
(
1998
).
9.
H.
Noguchi
and
M.
Takasu
,
J. Chem. Phys.
115
,
9547
(
2001
).
10.
I. R.
Cooke
,
K.
Kremer
, and
M.
Deserno
,
Phys. Rev. E
72
,
011506
(
2005
).
11.
S. J.
Marrink
,
A. H.
De Vries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
12.
W.
Shinoda
,
R.
Devane
, and
M. L.
Klein
,
Mol. Simul.
33
,
27
(
2007
).
13.
L.
Lu
and
G. A.
Voth
,
J. Phys. Chem. B
113
,
1501
(
2009
).
14.
A. P.
Lyubartsev
,
Eur. Biophys. J.
35
,
53
(
2005
).
15.
A. J.
Sodt
and
T.
Head-Gordon
,
J. Chem. Phys.
132
,
205103
(
2010
).
16.
J. C.
Shelley
,
M. Y.
Shelley
,
R. C.
Reeder
,
S.
Bandyopadhyay
,
P. B.
Moore
, and
M. L.
Klein
,
J. Phys. Chem. B
105
,
9785
(
2001
).
17.
E. M.
Curtis
and
C. K.
Hall
,
J. Phys. Chem. B
117
,
5019
(
2013
).
18.
E. E.
Barrera
,
E. N.
Frigini
,
R. D.
Porasso
, and
S.
Pantano
,
J. Mol. Model.
23
,
259
(
2017
).
19.
H.
Koldsø
,
D.
Shorthouse
,
J.
Hélie
, and
M. S. P.
Sansom
,
PLoS Comput. Biol.
10
,
e1003911
(
2014
).
20.
K.
Koshiyama
and
S.
Wada
,
Sci. Rep.
6
,
28164
(
2016
).
21.
V.
Corradi
,
E.
Mendez-Villuendas
,
H. I.
Ingólfsson
,
R.-X.
Gu
,
I.
Siuda
,
M. N.
Melo
,
A.
Moussatova
,
L. J.
DeGagné
,
B. I.
Sejdiu
,
G.
Singh
,
T. A.
Wassenaar
,
K.
Delgado Magnero
,
S. J.
Marrink
, and
D. P.
Tieleman
,
ACS Cent. Sci.
4
,
709
(
2018
).
22.
M.
Xue
,
L.
Cheng
,
I.
Faustino
,
W.
Guo
, and
S. J.
Marrink
,
Biophys. J.
115
,
494
(
2018
).
23.
C.
Arnarez
,
J. J.
Uusitalo
,
M. F.
Masman
,
H. I.
Ingólfsson
,
D. H.
De Jong
,
M. N.
Melo
,
X.
Periole
,
A. H.
De Vries
, and
S. J.
Marrink
,
J. Chem. Theory Comput.
11
,
260
(
2015
).
24.
C.
Clementi
,
H.
Nymeyer
, and
J. N.
Onuchic
,
J. Mol. Biol.
298
,
937
(
2000
).
25.
T. X.
Hoang
and
M.
Cieplak
,
J. Chem. Phys.
112
,
6851
(
2000
).
26.
N.
Koga
and
S.
Takada
,
J. Mol. Biol.
313
,
171
(
2001
).
27.
A. R.
Atilgan
,
S. R.
Durell
,
R. L.
Jernigan
,
M. C.
Demirel
,
O.
Keskin
, and
I.
Bahar
,
Biophys. J.
80
,
505
(
2001
).
28.
J.
Karanicolas
and
C. L.
Brooks
,
Protein Sci.
11
,
2351
(
2009
).
29.
G.
Brannigan
,
P. F.
Philips
, and
F. L. H.
Brown
,
Phys. Rev. E
72
,
011915
(
2005
).
30.
T.
Sintes
and
A.
Baumgärtner
,
J. Chem. Phys.
106
,
5744
(
1997
).
31.
F.
Schmid
,
D.
Düchs
,
O.
Lenz
, and
B.
West
,
Comput. Phys. Commun.
177
,
168
(
2007
).
32.
M.
Kranenburg
,
M.
Venturoli
, and
B.
Smit
,
J. Phys. Chem. B
107
,
11491
(
2003
).
33.
A.
Srivastava
and
G. A.
Voth
,
J. Chem. Theory Comput.
9
,
750
(
2013
).
34.
A. J.
Pak
,
T.
Dannenhoffer-Lafage
,
J. J.
Madsen
, and
G. A.
Voth
,
J. Chem. Theory Comput.
15
,
2087
(
2019
).
35.
J. D.
Revalee
,
M.
Laradji
, and
P. B.
Sunil Kumar
,
J. Chem. Phys.
128
,
035102
(
2008
).
36.
S. J.
Attwood
,
Y.
Choi
, and
Z.
Leonenko
,
Int. J. Mol. Sci.
14
,
3514
(
2013
).
37.
S.
Leekumjorn
and
A. K.
Sum
,
J. Phys. Chem. B
111
,
6026
(
2007
).
38.
I. R.
Cooke
and
M.
Deserno
,
J. Chem. Phys.
123
,
224710
(
2005
).
39.
H.
Kenzaki
,
N.
Koga
,
N.
Hori
,
R.
Kanada
,
W.
Li
,
K.-i.
Okazaki
,
X.-Q.
Yao
, and
S.
Takada
,
J. Chem. Theory Comput.
7
,
1979
(
2011
).
40.
X.
Gao
,
J.
Fang
, and
H.
Wang
,
J. Chem. Phys.
144
,
124113
(
2016
).
41.
See http://extremelearning.com.au/evenly-distributing-points-on-a-sphere/ for extreme learning; accessed 1 October 2019.
42.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1-2
,
19
(
2015
).
43.
J. P. M.
Jämbeck
and
A. P.
Lyubartsev
,
J. Phys. Chem. B
116
,
3164
(
2012
).
44.
J. P. M.
Jämbeck
and
A. P.
Lyubartsev
,
J. Chem. Theory Comput.
8
,
2938
(
2012
).
45.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
46.
See http://www.fos.su.se/∼sasha/SLipids/Downloads.html for SLipids; accessed 1 June 2019.
47.
W. J.
Allen
,
J. A.
Lemkul
, and
D. R.
Bevan
,
J. Comput. Chem.
30
,
1952
(
2009
).
48.
G.
Pranami
and
M. H.
Lamm
,
J. Chem. Theory Comput.
11
,
4586
(
2015
).
49.
V.
Agrawal
,
G.
Arya
, and
J.
Oswald
,
Macromolecules
47
,
3378
(
2014
).
50.
N.
Kučerka
,
M. P.
Nieh
, and
J.
Katsaras
,
Biochim. Biophys. Acta, Biomembr.
1808
,
2761
(
2011
).
51.
J. A.
Nelder
and
R.
Mead
,
Comput. J.
7
,
308
(
1965
).
52.
See https://www.cmu.edu/biolphys/deserno/mbtools/mbtools_tutorial-2015.pdf for mesoscopic membrane simulations with mbtools; accessed 1 November 2019.
53.
M.
Kranenburg
and
B.
Smit
,
J. Phys. Chem. B
109
,
6553
(
2005
).
54.
Q.
Waheed
,
R.
Tjörnhammar
, and
O.
Edholm
,
Biophys. J.
103
,
2125
(
2012
).
55.
Y.
Wang
,
P.
Gkeka
,
J. E.
Fuchs
,
K. R.
Liedl
, and
Z.
Cournia
,
Biochim. Biophys. Acta, Biomembr.
1858
,
2846
(
2016
).

Supplementary Material

You do not currently have access to this content.