A machine learning algorithm for partitioning the nuclear vibrational space into subspaces is introduced. The subdivision criterion is based on Liouville’s theorem, i.e., the best preservation of the unitary of the reduced dimensionality Jacobian determinant within each subspace along a probe full-dimensional classical trajectory. The algorithm is based on the idea of evolutionary selection, and it is implemented through a probability graph representation of the vibrational space partitioning. We interface this customized version of genetic algorithms with our divide-and-conquer semiclassical initial value representation method for the calculation of molecular power spectra. First, we benchmark the algorithm by calculating the vibrational power spectra of two model systems, for which the exact subspace division is known. Then, we apply it to the calculation of the power spectrum of methane. Exact calculations and full-dimensional semiclassical spectra of this small molecule are available and provide an additional test of the accuracy of the new approach. Finally, the algorithm is applied to the divide-and-conquer semiclassical calculation of the power spectrum of 12-atom trans-N-methylacetamide.

1.
J. H.
Holland
, “
Outline for a logical theory of adaptive systems
,”
J. ACM
9
,
297
314
(
1962
).
2.
D. E.
Goldberg
and
J. H.
Holland
, “
Genetic algorithms and machine learning
,”
Mach. Learn.
3
,
95
(
1988
).
3.
J. H.
Holland
 et al,
Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
(
MIT Press
,
1992
).
4.
R.
Freeman
and
W.
Xili
, “
Design of magnetic resonance experiments by genetic evolution
,”
J. Magn. Reson.
75
,
184
189
(
1987
).
5.
D. B.
Hibbert
, “
Genetic algorithms in chemistry
,”
Chemom. Intell. Lab. Syst.
19
,
277
293
(
1993
).
6.
R.
Leardi
, “
Genetic algorithms in chemometrics and chemistry: A review
,”
J. Chemom.
15
,
559
569
(
2001
).
7.
A.
Niazi
and
R.
Leardi
, “
Genetic algorithms in chemometrics
,”
J. Chemom.
26
,
345
351
(
2012
).
8.
A.
Beheshti
,
E.
Pourbasheer
,
M.
Nekoei
, and
S.
Vahdani
, “
QSAR modeling of antimalarial activity of urea derivatives using genetic algorithm–multiple linear regressions
,”
J. Saudi Chem. Soc.
20
,
282
290
(
2016
).
9.
B.
Bhattacharya
,
G. R.
Dinesh Kumar
,
A.
Agarwal
,
Ş.
Erkoç
,
A.
Singh
, and
N.
Chakraborti
, “
Analyzing Fe–Zn system using molecular dynamics, evolutionary neural nets and multi-objective genetic algorithms
,”
Comput. Mater. Sci.
46
,
821
827
(
2009
).
10.
M.
Ceotto
,
G.
Di Liberto
, and
R.
Conte
, “
Semiclassical ‘divide-and-conquer’ method for spectroscopic calculations of high dimensional molecular systems
,”
Phys. Rev. Lett.
119
,
010401
(
2017
).
11.
G.
Di Liberto
,
R.
Conte
, and
M.
Ceotto
, “
‘Divide and conquer’ semiclassical molecular dynamics: A practical method for spectroscopic calculations of high dimensional molecular systems
,”
J. Chem. Phys.
148
,
014307
(
2018
).
12.
M.
Wehrle
,
M.
Šulc
, and
J.
Vaníček
, “
On-the-fly ab initio semiclassical dynamics: Identifying degrees of freedom essential for emission spectra of oligothiophenes
,”
J. Chem. Phys.
140
,
244114
(
2014
).
13.
E. J.
Heller
, “
The semiclassical way to molecular spectroscopy
,”
Acc. Chem. Res.
14
,
368
375
(
1981
).
14.
A. L.
Kaledin
and
W. H.
Miller
, “
Time averaging the semiclassical initial value representation for the calculation of vibrational energy levels
,”
J. Chem. Phys.
118
,
7174
7182
(
2003
).
15.
A. L.
Kaledin
and
W. H.
Miller
, “
Time averaging the semiclassical initial value representation for the calculation of vibrational energy levels. II. Application to H2CO, NH3, CH4, CH2D2
,”
J. Chem. Phys.
119
,
3078
3084
(
2003
).
16.
W. H.
Miller
, “
Uniform semiclassical approximations for elastic scattering and eigenvalue problems
,”
J. Chem. Phys.
48
,
464
467
(
1968
).
17.
W. H.
Miller
, “
Semiclassical nature of atomic and molecular collisions
,”
Acc. Chem. Res.
4
,
161
167
(
1971
).
18.
W. H.
Miller
, “
Spiers memorial lecture quantum and semiclassical theory of chemical reaction rates
,”
Faraday Discuss.
110
,
1
21
(
1998
).
19.
W. H.
Miller
, “
The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations
,”
J. Phys. Chem. A
105
,
2942
2955
(
2001
).
20.
W. H.
Miller
, “
Quantum dynamics of complex molecular systems
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6660
6664
(
2005
).
21.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
, “
On the semiclassical description of quantum coherence in thermal rate constants
,”
J. Chem. Phys.
109
,
4190
4200
(
1998
).
22.
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
, “
Generalized forward–backward initial value representation for the calculation of correlation functions in complex systems
,”
J. Chem. Phys.
114
,
9220
9235
(
2001
).
23.
T.
Yamamoto
and
W. H.
Miller
, “
Semiclassical calculation of thermal rate constants in full Cartesian space: The benchmark reaction D + H2 → DH + H
,”
J. Chem. Phys.
118
,
2135
2152
(
2003
).
24.
E. J.
Heller
, “
Frozen Gaussians: A very simple semiclassical approximation
,”
J. Chem. Phys.
75
,
2923
2931
(
1981
).
25.
M. F.
Herman
and
E.
Kluk
, “
A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations
,”
Chem. Phys.
91
,
27
34
(
1984
).
26.
W. H.
Miller
, “
An alternate derivation of the Herman–Kluk (coherent state) semiclassical initial value representation of the time evolution operator
,”
Mol. Phys.
100
,
397
400
(
2002
).
27.
E.
Kluk
,
M. F.
Herman
, and
H. L.
Davis
, “
Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator
,”
J. Chem. Phys.
84
,
326
334
(
1986
).
28.
K. G.
Kay
, “
Semiclassical propagation for multidimensional systems by an initial value method
,”
J. Chem. Phys.
101
,
2250
2260
(
1994
).
29.
K. G.
Kay
, “
Integral expressions for the semiclassical time-dependent propagator
,”
J. Chem. Phys.
100
,
4377
4392
(
1994
).
30.
K. G.
Kay
, “
Numerical study of semiclassical initial value methods for dynamics
,”
J. Chem. Phys.
100
,
4432
4445
(
1994
).
31.
K. G.
Kay
, “
The Herman–Kluk approximation: Derivation and semiclassical corrections
,”
Chem. Phys.
322
,
3
12
(
2006
).
32.
F.
Grossmann
and
A. L.
Xavier
, “
From the coherent state path integral to a semiclassical initial value representation of the quantum mechanical propagator
,”
Phys. Lett. A
243
,
243
248
(
1998
).
33.
S. V.
Antipov
,
Z.
Ye
, and
N.
Ananth
,
J. Chem. Phys.
142
,
184102
(
2015
).
34.
M. S.
Church
,
S. V.
Antipov
, and
N.
Ananth
, “
Validating and implementing modified Filinov phase filtration in semiclassical dynamics
,”
J. Chem. Phys.
146
,
234104
(
2017
).
35.
M. S.
Church
and
N.
Ananth
, “
Semiclassical dynamics in the mixed quantum-classical limit
,”
J. Chem. Phys.
151
,
134109
(
2019
).
36.
M.
Buchholz
,
E.
Fallacara
,
F.
Gottwald
,
M.
Ceotto
,
F.
Grossmann
, and
S. D.
Ivanov
, “
Herman–Kluk propagator is free from zero-point energy leakage
,”
Chem. Phys.
515
,
231
235
(
2018
).
37.
E. J.
Heller
,
J. Chem. Phys.
94
,
2723
2729
(
1991
).
38.
G.
Di Liberto
and
M.
Ceotto
, “
The importance of the pre-exponential factor in semiclassical molecular dynamics
,”
J. Chem. Phys.
145
,
144107
(
2016
).
39.
X.
Ma
,
G.
Di Liberto
,
R.
Conte
,
W. L.
Hase
, and
M.
Ceotto
, “
A quantum mechanical insight into SN2 reactions: Semiclassical initial value representation calculations of vibrational features of the Cl⋯CH3Cl pre-reaction complex with the venus suite of codes
,”
J. Chem. Phys.
149
,
164113
(
2018
).
40.
N.
De Leon
and
E. J.
Heller
, “
Semiclassical quantization and extraction of eigenfunctions using arbitrary trajectories
,”
J. Chem. Phys.
78
,
4005
4017
(
1983
).
41.
M.
Ceotto
,
S.
Atahan
,
G. F.
Tantardini
, and
A.
Aspuru-Guzik
, “
Multiple coherent states for first-principles semiclassical initial value representation molecular dynamics
,”
J. Chem. Phys.
130
,
234113
(
2009
).
42.
M.
Ceotto
,
S.
Atahan
,
S.
Shim
,
G. F.
Tantardini
, and
A.
Aspuru-Guzik
, “
First-principles semiclassical initial value representation molecular dynamics
,”
Phys. Chem. Chem. Phys.
11
,
3861
3867
(
2009
).
43.
M.
Ceotto
,
G. F.
Tantardini
, and
A.
Aspuru-Guzik
, “
Fighting the curse of dimensionality in first-principles semiclassical calculations: Non-local reference states for large number of dimensions
,”
J. Chem. Phys.
135
,
214108
(
2011
).
44.
F.
Gabas
,
R.
Conte
, and
M.
Ceotto
, “
On-the-fly ab initio semiclassical calculation of Glycine vibrational spectrum
,”
J. Chem. Theory Comput.
13
,
2378
(
2017
).
45.
M.
Ceotto
,
D.
Dell’Angelo
, and
G. F.
Tantardini
, “
Multiple coherent states semiclassical initial value representation spectra calculations of lateral interactions for CO on Cu(100)
,”
J. Chem. Phys.
133
,
054701
(
2010
).
46.
R.
Conte
,
A.
Aspuru-Guzik
, and
M.
Ceotto
, “
Reproducing deep tunneling splittings, resonances, and quantum frequencies in vibrational spectra from a handful of direct ab initio semiclassical trajectories
,”
J. Phys. Chem. Lett.
4
,
3407
3412
(
2013
).
47.
M.
Micciarelli
,
F.
Gabas
,
R.
Conte
, and
M.
Ceotto
, “
An effective semiclassical approach to IR spectroscopy
,”
J. Chem. Phys.
150
,
184113
(
2019
).
48.
M.
Micciarelli
,
R.
Conte
,
J.
Suarez
, and
M.
Ceotto
, “
Anharmonic vibrational eigenfunctions and infrared spectra from semiclassical molecular dynamics
,”
J. Chem. Phys.
149
,
064115
(
2018
).
49.
D.
Tamascelli
,
F. S.
Dambrosio
,
R.
Conte
, and
M.
Ceotto
, “
Graphics processing units accelerated semiclassical initial value representation molecular dynamics
,”
J. Chem. Phys.
140
,
174109
(
2014
).
50.
M.
Buchholz
,
F.
Grossmann
, and
M.
Ceotto
, “
Mixed semiclassical initial value representation time-averaging propagator for spectroscopic calculations
,”
J. Chem. Phys.
144
,
094102
(
2016
).
51.
M.
Buchholz
,
F.
Grossmann
, and
M.
Ceotto
, “
Application of the mixed time-averaging semiclassical initial value representation method to complex molecular spectra
,”
J. Chem. Phys.
147
,
164110
(
2017
).
52.
M.
Buchholz
,
F.
Grossmann
, and
M.
Ceotto
, “
Simplified approach to the mixed time-averaging semiclassical initial value representation for the calculation of dense vibrational spectra
,”
J. Chem. Phys.
148
,
114107
(
2018
).
53.
Y.
Zhuang
,
M. R.
Siebert
,
W. L.
Hase
,
K. G.
Kay
, and
M.
Ceotto
, “
Evaluating the accuracy of Hessian approximations for direct dynamics simulations
,”
J. Chem. Theory Comput.
9
,
54
64
(
2012
).
54.
M.
Ceotto
,
Y.
Zhuang
, and
W. L.
Hase
, “
Accelerated direct semiclassical molecular dynamics using a compact finite difference Hessian scheme
,”
J. Chem. Phys.
138
,
054116
(
2013
).
55.
C.
Aieta
,
M.
Micciarelli
,
G.
Bertaina
, and
M.
Ceotto
, “
Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine
,”
Nat. Commun.
11
,
4348
(
2020
).
56.
R.
Conte
,
L.
Parma
,
C.
Aieta
,
A.
Rognoni
, and
M.
Ceotto
, “
Improved semiclassical dynamics through adiabatic switching trajectory sampling
,”
J. Chem. Phys.
151
,
214107
(
2019
).
57.
G.
Di Liberto
,
R.
Conte
, and
M.
Ceotto
, “
‘Divide-and-conquer’ semiclassical molecular dynamics: An application to water clusters
,”
J. Chem. Phys.
148
,
104302
(
2018
).
58.
G.
Bertaina
,
G.
Di Liberto
, and
M.
Ceotto
, “
Reduced rovibrational coupling Cartesian dynamics for semiclassical calculations: Application to the spectrum of the Zundel cation
,”
J. Chem. Phys.
151
,
114307
(
2019
).
59.
F.
Gabas
,
G.
Di Liberto
,
R.
Conte
, and
M.
Ceotto
, “
Protonated glycine supramolecular systems: The need for quantum dynamics
,”
Chem. Sci.
9
,
7894
7901
(
2018
).
60.
F.
Gabas
,
G.
Di Liberto
, and
M.
Ceotto
, “
Vibrational investigation of nucleobases by means of divide and conquer semiclassical dynamics
,”
J. Chem. Phys.
150
,
224107
(
2019
).
61.
F.
Gabas
,
R.
Conte
, and
M.
Ceotto
, “
Semiclassical vibrational spectroscopy of biological molecules using force fields
,”
J. Chem. Theory Comput.
16
,
3476
3485
(
2020
).
62.
M.
Cazzaniga
,
M.
Micciarelli
,
F.
Moriggi
,
A.
Mahmoud
,
F.
Gabas
, and
M.
Ceotto
, “
Anharmonic calculations of vibrational spectra for molecular adsorbates: A divide-and-conquer semiclassical molecular dynamics approach
,”
J. Chem. Phys.
152
,
104104
(
2020
).
63.
M. L.
Brewer
,
J. S.
Hulme
, and
D. E.
Manolopoulos
, “
Semiclassical dynamics in up to 15 coupled vibrational degrees of freedom
,”
J. Chem. Phys.
106
,
4832
4839
(
1997
).
64.
R.
Sinkhorn
and
P.
Knopp
, “
Concerning nonnegative matrices and doubly stochastic matrices
,”
Pac. J. Math.
21
,
343
348
(
1967
).
65.
N. J.
Higham
, “
Gaussian elimination
,”
Wiley Interdiscip. Rev.: Comput. Stat.
3
,
230
238
(
2011
).
66.
M.
Aigner
and
G. M.
Ziegler
, “
Cayley’s formula for the number of trees
,” in ,” (
Springer, Berlin, Heidelberg
,
1998
).
67.
R. R.
Sokal
and
C. D.
Michener
, “
A statistical method for evaluating systematic relationships
,”
Univ. Kans. Sci. Bull.
38
,
1409
1438
(
1958
).
68.
T. J.
Lee
,
J. M. L.
Martin
, and
P. R.
Taylor
, “
An accurate ab initio quartic force field and vibrational frequencies for CH4 and isotopomers
,”
J. Chem. Phys.
102
,
254
261
(
1995
).
69.
D. L.
Gray
and
A. G.
Robiette
, “
The anharmonic force field and equilibrium structure of methane
,”
Mol. Phys.
37
,
1901
1920
(
1979
).
70.
W. T.
Raynes
,
P.
Lazzeretti
,
R.
Zanasi
,
A. J.
Sadlej
, and
P. W.
Fowler
, “
Calculations of the force field of the methane molecule
,”
Mol. Phys.
60
,
509
525
(
1987
).
71.
S.
Carter
,
H. M.
Shnider
, and
J. M.
Bowman
, “
Variational calculations of rovibrational energies of CH4 and isotopomers in full dimensionality using an ab initio potential
,”
J. Chem. Phys.
110
,
8417
8423
(
1999
).
72.
C.
Qu
and
J. M.
Bowman
, “
A fragmented, permutationally invariant polynomial approach for potential energy surfaces of large molecules: Application to N-methyl acetamide
,”
J. Chem. Phys.
150
,
141101
(
2019
).
73.
X. G.
Chen
,
R.
Schweitzer-Stenner
,
S. A.
Asher
,
N. G.
Mirkin
, and
S.
Krimm
, “
Vibrational assignments of trans-N-methylacetamide and some of its deuterated isotopomers from band decomposition of IR, visible, and resonance Raman spectra
,”
J. Phys. Chem.
99
,
3074
3083
(
1995
).
74.
J.
Kubelka
and
T. A.
Keiderling
, “
Ab initio calculation of amide carbonyl stretch vibrational frequencies in solution with modified basis sets. 1. N-methyl acetamide
,”
J. Phys. Chem. A
105
,
10922
10928
(
2001
).
75.
H.
Torii
,
T.
Tatsumi
,
T.
Kanazawa
, and
M.
Tasumi
, “
Effects of intermolecular hydrogen-bonding interactions on the amide I mode of N-methylacetamide: Matrix-isolation infrared studies and ab initio molecular orbital calculations
,”
J. Phys. Chem. B
102
,
309
314
(
1998
).
76.
S.
Ataka
,
H.
Takeuchi
, and
M.
Tasumi
, “
Infrared studies of the less stable cis form of N-methylformmaide and N-methylacetamide in low-temperature nitrogen matrices and vibrational analyses of the trans and cis forms of these molecules
,”
J. Mol. Struct.
113
,
147
160
(
1984
).
77.
L. C.
Mayne
and
B.
Hudson
, “
Resonance Raman spectroscopy of N-methylacetamide: Overtones and combinations of the carbon-nitrogen stretch (amide II′) and effect of solvation on the carbon-oxygen double-bond stretch (amide I) intensity
,”
J. Phys. Chem.
95
,
2962
2967
(
1991
).
78.
N. E.
Triggs
and
J. J.
Valentini
, “
An investigation of hydrogen bonding in amides using Raman spectroscopy
,”
J. Phys. Chem.
96
,
6922
6931
(
1992
).
79.
W. E.
Wallace
, “
Infrared spectra
,” in
NIST Chemistry WebBook
, NIST Standard Reference Database Number 69, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2020
).
80.
A. L.
Kaledin
and
J. M.
Bowman
, “
Full dimensional quantum calculations of vibrational energies of N-methyl acetamide
,”
J. Phys. Chem. A
111
,
5593
5598
(
2007
).
81.
R.
Conte
,
G.
Botti
, and
M.
Ceotto
, “
Sensitivity of semiclassical vibrational spectroscopy to potential energy surface accuracy: A test on formaldehyde
,”
Vib. Spectrosc.
106
,
103015
(
2020
).
82.
Y.
Wang
and
J. M.
Bowman
, “
Coupled-monomers in molecular assemblies: Theory and application to the water tetramer, pentamer, and ring hexamer
,”
J. Chem. Phys.
136
,
144113
(
2012
).
83.
H.
Liu
,
Y.
Wang
, and
J. M.
Bowman
, “
Quantum calculations of intramolecular IR spectra of ice models using ab initio potential and dipole moment surfaces
,”
J. Phys. Chem. Lett.
3
,
3671
3676
(
2012
).
84.
Y.
Wang
and
J. M.
Bowman
, “
IR spectra of the water hexamer: Theory, with inclusion of the monomer bend overtone, and experiment are in agreement
,”
J. Phys. Chem. Lett.
4
,
1104
1108
(
2013
).
85.
T.
Begusic
,
J.
Roulet
, and
J.
Vanicek
, “
On-the-fly ab initio semiclassical evaluation of time-resolved electronic spectra
,”
J. Chem. Phys.
149
,
244115
(
2018
).
86.
A.
Patoz
,
T.
Begušić
, and
J.
Vaníček
, “
On-the-fly ab initio semiclassical evaluation of absorption spectra of polyatomic molecules beyond the condon approximation
,”
J. Phys. Chem. Lett.
9
,
2367
2372
(
2018
).
87.
M.
Wehrle
,
S.
Oberli
, and
J.
Vaníček
, “
On-the-Fly ab initio semiclassical dynamics of floppy molecules: Absorption and photoelectron spectra of ammonia
,”
J. Phys. Chem. A
119
,
5685
5690
(
2015
).
You do not currently have access to this content.