Elemental red phosphorus (red P) is a new class of photocatalysts with a desirable bandgap of ∼1.7 eV and has a strong visible-light response. Here, we show that the efficiency of red P is limited by severe electron trapping at deep traps that are intrinsic to the different crystal facets of the red P. To overcome this, we synthesized the red P/RGO (reduced graphene oxide) composite in a one-step ampoule chemical vapor deposition synthesis that formed a conducive interface between the red P photocatalyst and the RGO acceptor for efficient interfacial charge transport. As substantiated through photoelectrochemical characterization and ultrafast (femtoseconds) transient absorption spectroscopy, the interfacing with RGO provided a rapid pathway for the photocharges in red P to be interfacially separated, thereby circumventing the slower the charge trapping process. As a result, up to a sevenfold increase in the photocatalytic hydrogen production rate (apparent quantum yield = 3.1% at 650 nm) was obtained for the red P/RGO relative to the pristine red P.

1.
W.-J.
Ong
,
L.-L.
Tan
,
Y. H.
Ng
,
S.-T.
Yong
, and
S.-P.
Chai
,
Chem. Rev.
116
,
7159
(
2016
).
2.
P.
Yang
,
H.
Ou
,
Y.
Fang
, and
X.
Wang
,
Angew. Chem., Int. Ed.
56
,
3992
(
2017
).
3.
K. L.
Corp
and
C. W.
Schlenker
,
J. Am. Chem. Soc.
139
,
7904
(
2017
).
4.
Z.
Hu
,
L.
Yuan
,
Z.
Liu
,
Z.
Shen
, and
J. C.
Yu
,
Angew. Chem.
55
,
9580
(
2016
).
5.
Z.
Hu
,
Z.
Shen
, and
J. C.
Yu
,
Green Chem.
19
,
588
(
2017
).
6.
F.
Wang
,
W. K. H.
Ng
,
J. C.
Yu
,
H.
Zhu
,
C.
Li
,
L.
Zhang
,
Z.
Liu
, and
Q.
Li
,
Appl. Catal., B
111-112
,
409
(
2012
).
7.
Z.
Shen
,
S.
Sun
,
W.
Wang
,
J.
Liu
,
Z.
Liu
, and
J. C.
Yu
,
J. Mater. Chem. A
3
,
3285
(
2015
).
8.
F.
Wang
,
C.
Li
,
Y.
Li
, and
J. C.
Yu
,
Appl. Catal., B
119-120
,
267
(
2012
).
9.
Z.
Shen
,
Z.
Hu
,
W.
Wang
,
S.-F.
Lee
,
D. K.
Chan
,
Y.
Li
,
T.
Gu
, and
J. C.
Yu
,
Nanoscale
6
,
14163
(
2014
).
10.
L.
Jing
,
R.
Zhu
,
D. L.
Phillips
, and
J. C.
Yu
,
Adv. Funct. Mater.
27
,
1703484
(
2017
).
11.
F.
Bachhuber
,
J.
von Appen
,
R.
Dronskowski
,
P.
Schmidt
,
T.
Nilges
,
A.
Pfitzner
, and
R.
Weihrich
,
Angew. Chem., Int. Ed.
53
,
11629
(
2014
).
12.
O.
Osters
,
T.
Nilges
,
F.
Bachhuber
,
F.
Pielnhofer
,
R.
Weihrich
,
M.
Schöneich
, and
P.
Schmidt
,
Angew. Chem., Int. Ed.
51
,
2994
(
2012
).
13.
M.
Ruck
,
D.
Hoppe
,
B.
Wahl
,
P.
Simon
,
Y.
Wang
, and
G.
Seifert
,
Angew. Chem., Int. Ed.
44
,
7616
(
2005
).
14.
A.
Pfitzner
,
M. F.
Bräu
,
J.
Zweck
,
G.
Brunklaus
, and
H.
Eckert
,
Angew. Chem., Int. Ed.
43
,
4228
(
2004
).
15.
A.
Pfitzner
,
Angew. Chem., Int. Ed.
45
,
699
(
2006
).
16.
D.
Xia
,
Z.
Shen
,
G.
Huang
,
W.
Wang
,
J. C.
Yu
, and
P. K.
Wong
,
Environ. Sci. Technol.
49
,
6264
(
2015
).
17.
J. B.
Smith
,
D.
Hagaman
,
D.
DiGuiseppi
,
R.
Schweitzer-Stenner
, and
H.-F.
Ji
,
Angew. Chem., Int. Ed.
55
,
11829
(
2016
).
18.
W.-C.
Chang
,
K.-W.
Tseng
, and
H.-Y.
Tuan
,
Nano Lett.
17
,
1240
(
2017
).
19.
S. A.
Ansari
,
M. O.
Ansari
, and
M. H.
Cho
,
Sci. Rep.
6
,
27713
(
2016
).
20.
L.
Jiang
,
X.
Yuan
,
G.
Zeng
,
X.
Chen
,
Z.
Wu
,
J.
Liang
,
J.
Zhang
,
H.
Wang
, and
H.
Wang
,
ACS Sustainable Chem. Eng.
5
,
5831
(
2017
).
21.
K.
Wang
,
Q.
Li
,
B.
Liu
,
B.
Cheng
,
W.
Ho
, and
J.
Yu
,
Appl. Catal., B
176-177
,
44
(
2015
).
22.
J.
Ran
,
T. Y.
Ma
,
G.
Gao
,
X.-W.
Du
, and
S. Z.
Qiao
,
Energy Environ. Sci.
8
,
3708
(
2015
).
23.
V. S.
Chirvony
,
S.
González-Carrero
,
I.
Suárez
,
R. E.
Galian
,
M.
Sessolo
,
H. J.
Bolink
,
J. P.
Martínez-Pastor
, and
J.
Pérez-Prieto
,
J. Phys. Chem. C
121
,
13381
(
2017
).
24.
H.
Kasap
,
C. A.
Caputo
,
B. C.
Martindale
,
R.
Godin
,
V. W.-h.
Lau
,
B. V.
Lotsch
,
J. R.
Durrant
, and
E.
Reisner
,
J. Am. Chem. Soc.
138
,
9183
(
2016
).
25.
J. J.
Walsh
,
C.
Jiang
,
J.
Tang
, and
A. J.
Cowan
,
Phys. Chem. Chem. Phys.
18
,
24825
(
2016
).
26.
R.
Kuriki
,
H.
Matsunaga
,
T.
Nakashima
,
K.
Wada
,
A.
Yamakata
,
O.
Ishitani
, and
K.
Maeda
,
J. Am. Chem. Soc.
138
,
5159
(
2016
).
27.
R.
Godin
,
Y.
Wang
,
M. A.
Zwijnenburg
,
J.
Tang
, and
J. R.
Durrant
,
J. Am. Chem. Soc.
139
,
5216
(
2017
).
28.
I. S.
Cho
,
C. H.
Lee
,
Y.
Feng
,
M.
Logar
,
P. M.
Rao
,
L.
Cai
,
D. R.
Kim
,
R.
Sinclair
, and
X.
Zheng
,
Nat. Commun.
4
,
1723
(
2013
).
29.
L.
Jing
,
H. L.
Tan
,
R.
Amal
,
Y. H.
Ng
, and
K.-N.
Sun
,
J. Mater. Chem. A
3
,
15675
(
2015
).
30.
H. L.
Tan
,
X.
Wen
,
R.
Amal
, and
Y. H.
Ng
,
J. Phys. Chem. Lett.
7
,
1400
(
2016
).
31.
H. L.
Tan
,
H. A.
Tahini
,
X.
Wen
,
R. J.
Wong
,
X.
Tan
,
A.
Iwase
,
A.
Kudo
,
R.
Amal
,
S. C.
Smith
, and
Y. H.
Ng
,
Small
12
,
5295
(
2016
).
32.
Y.
Zhao
,
S.
Huang
,
M.
Xia
,
S.
Rehman
,
S.
Mu
,
Z.
Kou
,
Z.
Zhang
,
Z.
Chen
,
F.
Gao
, and
Y.
Hou
,
Nano Energy
28
,
346
(
2016
).
33.
Y.
Liu
,
A.
Zhang
,
C.
Shen
,
Q.
Liu
,
X.
Cao
,
Y.
Ma
,
L.
Chen
,
C.
Lau
,
T.-C.
Chen
,
F.
Wei
, and
C.
Zhou
,
ACS Nano
11
,
5530
(
2017
).
34.
J.
Sun
,
H.-W.
Lee
,
M.
Pasta
,
Y.
Sun
,
W.
Liu
,
Y.
Li
,
H. R.
Lee
,
N.
Liu
, and
Y.
Cui
,
Energy Storage Mater.
4
,
130
(
2016
).
35.
H.
Yang
,
S. V.
Kershaw
,
Y.
Wang
,
X.
Gong
,
S.
Kalytchuk
,
A. L.
Rogach
, and
W. Y.
Teoh
,
J. Phys. Chem. C
117
,
20406
(
2013
).
36.
M.
Zhu
,
C.
Zhai
,
M.
Fujitsuka
, and
T.
Majima
,
Appl. Catal., B
221
,
645
(
2018
).
37.
M.
Zhu
,
Z.
Sun
,
M.
Fujitsuka
, and
T.
Majima
,
Angew. Chem., Int. Ed.
57
,
2160
(
2018
).
38.
L.
Chen
,
C.
Zhang
,
L.
Li
,
H.
Wu
,
X.
Wang
,
S.
Yan
,
Y.
Shi
, and
M.
Xiao
,
J. Phys. Chem. C
121
,
12972
(
2017
).
39.
L.
Bai
,
X.
Wang
,
S.
Tang
,
Y.
Kang
,
J.
Wang
,
Y.
Yu
,
Z.-K.
Zhou
,
C.
Ma
,
X.
Zhang
,
J.
Jiang
,
P. K.
Chu
, and
X.-F.
Yu
,
Adv. Mater.
30
,
1803641
(
2018
).
40.
M. R.
Hoffmann
,
S. T.
Martin
,
W.
Choi
, and
D. W.
Bahnemann
,
Chem. Rev.
95
,
69
(
1995
).

Supplementary Material

You do not currently have access to this content.