While growth and dissolution of surface nanobubbles have been widely studied in recent years, their stability under pressure changes or a temperature increase has not received the same level of scrutiny. Here, we present theoretical predictions based on classical theory for pressure and temperature thresholds (pc and Tc) at which unstable growth occurs for the case of air nanobubbles on a solid surface in water. We show that bubbles subjected to pinning have much lower pc and higher Tc compared to both unpinned and bulk bubbles of similar size, indicating that pinned bubbles can withstand a larger tensile stress (negative pressure) and higher temperatures. The values of pc and Tc obtained from many-body dissipative particle dynamics simulations of quasi-two-dimensional (quasi-2D) surface nanobubbles are consistent with the theoretical predictions, provided that the lateral expansion during growth is taken into account. This suggests that the modified classical thermodynamic description is valid for pinned bubbles as small as several nanometers. While some discrepancies still exist between our theoretical results and previous experiments, further experimental data are needed before a comprehensive understanding of the stability of surface nanobubbles can be achieved.

1.
J. L.
Parker
,
P. M.
Claesson
, and
P.
Attard
, “
Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces
,”
J. Chem. Phys.
98
,
8468
8480
(
1994
).
2.
S.-T.
Lou
,
Z.-Q.
Ouyang
,
Y.
Zhang
,
X.-J.
Li
,
J.
Hu
,
M.-Q.
Li
, and
F.-J.
Yang
, “
Nanobubbles on solid surface imaged by atomic force microscopy
,”
J. Vac. Sci. Technol., B
18
,
2573
(
2000
).
3.
N.
Ishida
,
T.
Inoue
,
M.
Miyahara
, and
K.
Higashitani
, “
Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy
,”
Langmuir
16
,
6377
6380
(
2000
).
4.
P. S.
Epstein
and
M. S.
Plesset
, “
On the stability of gas bubbles in liquid-gas solutions
,”
J. Chem. Phys.
18
,
1505
1509
(
1950
).
5.
D.
Lohse
and
X.
Zhang
, “
Surface nanobubbles and nanodroplets
,”
Rev. Mod. Phys.
87
,
981
1035
(
2015
).
6.
M.
Alheshibri
,
J.
Qian
,
M.
Jehannin
, and
V. S. J.
Craig
, “
A history of nanobubbles
,”
Langmuir
32
,
11086
11100
(
2016
).
7.
X. H.
Zhang
,
N.
Maeda
, and
V. S. J.
Craig
, “
Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions
,”
Langmuir
22
,
5025
5035
(
2006
).
8.
M.
Switkes
and
J. W.
Ruberti
, “
Rapid cryofixation/freeze fracture for the study of nanobubbles at solid–liquid interfaces
,”
Appl. Phys. Lett.
84
,
4759
4761
(
2004
).
9.
R.
Steitz
,
T.
Gutberlet
,
T.
Hauss
,
B.
Klösgen
,
R.
Krastev
,
S.
Schemmel
,
A. C.
Simonsen
, and
G. H.
Findenegg
, “
Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate
,”
Langmuir
19
,
2409
2418
(
2003
).
10.
S.
Karpitschka
,
E.
Dietrich
,
J. R.
Seddon
,
H. J.
Zandvliet
,
D.
Lohse
, and
H.
Riegler
, “
Nonintrusive optical visualization of surface nanobubbles
,”
Phys. Rev. Lett.
109
,
066102
(
2012
).
11.
C. U.
Chan
and
C. D.
Ohl
, “
Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics
,”
Phys. Rev. Lett.
109
,
174501
(
2012
).
12.
X.
Zhang
,
D. Y. C.
Chan
,
D.
Wang
, and
N.
Maeda
, “
Stability of interfacial nanobubbles
,”
Langmuir
29
,
1017
1023
(
2013
).
13.
J. H.
Weijs
and
D.
Lohse
, “
Why surface nanobubbles live for hours
,”
Phys. Rev. Lett.
110
,
054501
(
2013
).
14.
Y.
Liu
and
X.
Zhang
, “
Nanobubble stability induced by contact line pinning
,”
J. Chem. Phys.
138
,
014706
(
2013
).
15.
Y.
Liu
and
X.
Zhang
, “
A unified mechanism for the stability of surface nanobubbles: Contact line pinning and supersaturation
,”
J. Chem. Phys.
141
,
134702
(
2014
).
16.
Y.
Liu
,
J.
Wang
,
X.
Zhang
, and
W.
Wang
, “
Contact line pinning and the relationship between nanobubbles and substrates
,”
J. Chem. Phys.
140
,
054705
(
2014
).
17.
D.
Lohse
and
X.
Zhang
, “
Pinning and gas oversaturation imply stable single surface nanobubbles
,”
Phys. Rev. E
91
,
031003
(
2015
).
18.
C. U.
Chan
,
L.
Chen
,
M.
Arora
, and
C. D.
Ohl
, “
Collapse of surface nanobubbles
,”
Phys. Rev. Lett.
114
,
114505
(
2015
).
19.
Y.
Liu
and
X.
Zhang
, “
Vapor bridges between solid substrates in the presence of the contact line pinning effect: Stability and capillary force
,”
J. Chem. Phys.
145
,
214701
(
2016
).
20.
Z.
Guo
,
Y.
Liu
,
Q.
Xiao
,
H.
Schönherr
, and
X.
Zhang
, “
Modeling the interaction between AFM tips and pinned surface nanobubbles
,”
Langmuir
32
,
751
758
(
2016
).
21.
B.
Dollet
and
D.
Lohse
, “
Pinning stabilizes neighboring surface nanobubbles against Ostwald ripening
,”
Langmuir
32
,
11335
11339
(
2016
).
22.
S.
Maheshwari
,
M.
Van Der Hoef
,
X.
Zhang
, and
D.
Lohse
, “
Stability of surface nanobubbles: A molecular dynamics study
,”
Langmuir
32
,
11116
11122
(
2016
).
23.
Q.
Xiao
,
Y.
Liu
,
Z.
Guo
,
Z.
Liu
, and
X.
Zhang
, “
How nanobubbles lose stability: Effects of surfactants
,”
Appl. Phys. Lett.
111
,
131601
(
2017
).
24.
Q.
Xiao
,
Y.
Liu
,
Z.
Guo
,
Z.
Liu
,
D.
Lohse
, and
X.
Zhang
, “
Solvent exchange leading to nanobubble nucleation: A molecular dynamics study
,”
Langmuir
33
,
8090
8096
(
2017
).
25.
Y.
Liu
and
X.
Zhang
, “
Molecular dynamics simulation of nanobubble nucleation on rough surfaces
,”
J. Chem. Phys.
146
,
164704
(
2017
).
26.
B. H.
Tan
,
H.
An
, and
C. D.
Ohl
, “
Resolving the pinning force of nanobubbles with optical microscopy
,”
Phys. Rev. Lett.
118
,
054501
(
2017
).
27.
B. H.
Tan
,
H.
An
, and
C.-D.
Ohl
, “
Surface nanobubbles are stabilized by hydrophobic attraction
,”
Phys. Rev. Lett.
120
,
164502
(
2018
).
28.
S.
Maheshwari
,
M.
Van Der Hoef
,
J.
Rodr
́guez Rodr
́guez
ıı, and
D.
Lohse
, “
Leakiness of pinned neighboring surface nanobubbles induced by strong gas-surface interaction
,”
ACS Nano
12
,
2603
2609
(
2018
).
29.
Y. A.
Perez Sirkin
,
E. D.
Gadea
,
D. A.
Scherlis
, and
V.
Molinero
, “
Mechanisms of nucleation and stationary states of electrochemically generated nanobubbles
,”
J. Am. Chem. Soc.
141
,
10801
10811
(
2019
).
30.
Z.
Guo
and
X.
Zhang
, “
Enhanced fluctuation for pinned surface nanobubbles
,”
Phys. Rev. E
100
,
052803
(
2019
).
31.
S.
Wang
,
L.
Zhou
,
X.
Wang
,
C.
Wang
,
Y.
Dong
,
Y.
Zhang
,
Y.
Gao
,
L.
Zhang
, and
J.
Hu
, “
Force spectroscopy revealed a high-gas-density state near the graphite substrate inside surface nanobubbles
,”
Langmuir
35
,
2498
2505
(
2019
).
32.
L.
Zhou
,
X.
Wang
,
H.-J.
Shin
,
J.
Wang
,
R.
Tai
,
X.
Zhang
,
H.
Fang
,
W.
Xiao
,
L.
Wang
,
C.
Wang
,
X.
Gao
,
J.
Hu
, and
L.
Zhang
, “
Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water
,”
J. Am. Chem. Soc.
142
,
5583
5593
(
2020
).
33.
B. M.
Borkent
,
S. M.
Dammer
,
H.
Schönherr
,
G. J.
Vancso
, and
D.
Lohse
, “
Superstability of surface nanobubbles
,”
Phys. Rev. Lett.
98
,
204502
(
2007
).
34.
F.
Blake
,
Onset of Cavitation in Liquids, Technical Memorandum
(
Harvard University
,
1949
).
35.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University
,
New York
,
1995
).
36.
X.
Zhang
,
H.
Lhuissier
,
C.
Sun
, and
D.
Lohse
, “
Surface nanobubbles nucleate microdroplets
,”
Phys. Rev. Lett.
112
,
144503
(
2014
).
37.
D.
Dockar
,
M. K.
Borg
, and
J. M.
Reese
, “
Mechanical stability of surface nanobubbles
,”
Langmuir
35
,
9325
9333
(
2019
).
38.
Lord Rayleigh
, “
VIII. On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Philos. Mag.
34
,
94
98
(
1917
).
39.
M. S.
Plesset
, “
The dynamics of cavitation bubbles
,”
J. Appl. Mech.
16
,
277
282
(
1949
).
40.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
41.
N.
Bremond
,
M.
Arora
,
S. M.
Dammer
, and
D.
Lohse
, “
Interaction of cavitation bubbles on a wall
,”
Phys. Fluids
18
,
121505
(
2006
).
42.
Y.
Liu
and
X.
Zhang
, “
Evaporation dynamics of nanodroplets and their anomalous stability on rough substrates
,”
Phys. Rev. E
88
,
012404
(
2013
).
43.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
292
(
2013
).
44.
N. B.
Vargaftik
,
B. N.
Volkov
, and
L. D.
Voljak
, “
International tables of the surface tension of water
,”
J. Phys. Chem. Ref. Data
12
,
817
820
(
1983
).
45.
W.
Wagner
and
A.
Pruss
, “
International equations for the saturation properties of Ordinary water substance. Revised according to the International temperature scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893 (1987)
,”
J. Phys. Chem. Ref. Data
22
,
783
787
(
1993
).
46.
V.
Belova
,
D. A.
Gorin
,
D. G.
Shchukin
, and
H.
Möhwald
, “
Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces
,”
ACS Appl. Mater. Interfaces
3
,
417
425
(
2011
).
47.
A. H.
Harvey
, “
Semiempirical correlation for Henry’s constants over large temperature ranges
,”
AIChE J.
42
,
1491
1494
(
1996
).
48.
I.
Pagonabarraga
and
D.
Frenkel
, “
Dissipative particle dynamics for interacting systems
,”
J. Chem. Phys.
115
,
5015
5026
(
2001
).
49.
M.
Arienti
,
W.
Pan
,
X.
Li
, and
G.
Karniadakis
, “
Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions
,”
J. Chem. Phys.
134
,
204114
(
2011
).
50.
A.
Ghoufi
and
P.
Malfreyt
, “
Mesoscale modeling of the water liquid-vapor interface: A surface tension calculation
,”
Phys. Rev. E
83
,
051601
(
2011
).
51.
A.
Ghoufi
,
J.
Emile
, and
P.
Malfreyt
, “
Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces
,”
Eur. Phys. J. E
36
,
10
(
2013
).
52.
Z.
Che
and
P. E.
Theodorakis
, “
Formation, dissolution and properties of surface nanobubbles
,”
J. Colloid Interface Sci.
487
,
123
129
(
2017
).
53.
Y.-X.
Chen
,
Y.-L.
Chen
, and
T.-H.
Yen
, “
Investigating interfacial effects on surface nanobubbles without pinning using molecular dynamics simulation
,”
Langmuir
34
,
15360
15369
(
2018
).
54.
P. E.
Theodorakis
and
Z.
Che
, “
Surface nanobubbles: Theory, simulation, and experiment. A review
,”
Adv. Colloid Interface Sci.
272
,
101995
(
2019
).
55.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
56.
Z.
Li
,
G.-H.
Hu
,
Z.-L.
Wang
,
Y.-B.
Ma
, and
Z.-W.
Zhou
, “
Three dimensional flow structures in a moving droplet on substrate: A dissipative particle dynamics study
,”
Phys. Fluids
25
,
072103
(
2013
).
57.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
58.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Elsevier
,
2010
), pp.
205
212
.
59.
S. R.
German
,
M. A.
Edwards
,
Q.
Chen
, and
H. S.
White
, “
Laplace pressure of individual H2 nanobubbles from pressure-addition electrochemistry
,”
Nano Lett.
16
,
6691
6694
(
2016
).
60.
W. A.
Ducker
, “
Contact angle and stability of interfacial nanobubbles
,”
Langmuir
25
,
8907
8910
(
2009
).
61.
S. O.
Yurchenko
,
A. V.
Shkirin
,
B. W.
Ninham
,
A. A.
Sychev
,
V. A.
Babenko
,
N. V.
Penkov
,
N. P.
Kryuchkov
, and
N. F.
Bunkin
, “
Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions
,”
Langmuir
32
,
11245
11255
(
2016
).
62.
B. P.
Dyett
,
M.
Li
,
H.
Zhao
, and
X.
Zhang
, “
Plasmonic nanobubbles in “armored” surface nanodroplets
,”
J. Phys. Chem. C
123
,
29866
29874
(
2019
).
63.
D.
Shin
,
J. B.
Park
,
Y. J.
Kim
,
S. J.
Kim
,
J. H.
Kang
,
B.
Lee
,
S. P.
Cho
,
B. H.
Hong
, and
K. S.
Novoselov
, “
Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells
,”
Nat. Commun.
6
,
6068
(
2015
).

Supplementary Material

You do not currently have access to this content.