The problem of flickering trajectories in standard kinetic Monte Carlo (kMC) simulations prohibits sampling of the transition path ensembles (TPEs) on Markovian networks representing many slow dynamical processes of interest. In the present contribution, we overcome this problem using knowledge of the metastable macrostates, determined by an unsupervised community detection algorithm, to perform enhanced sampling kMC simulations. We implement two accelerated kMC methods to simulate the nonequilibrium stochastic dynamics on arbitrary Markovian networks, namely, weighted ensemble (WE) sampling and kinetic path sampling (kPS). WE-kMC utilizes resampling in pathway space to maintain an ensemble of representative trajectories covering the state space, and kPS utilizes graph transformation to simplify the description of an escape trajectory from a trapping energy basin. Both methods sample individual trajectories governed by the linear master equation with the correct statistical frequency. We demonstrate that they allow for efficient estimation of the time-dependent occupation probability distributions for the metastable macrostates, and of TPE statistics, such as committor functions and first passage time distributions. kPS is particularly attractive, since its efficiency is essentially independent of the degree of metastability, and we suggest how the algorithm could be coupled with other enhanced sampling methodologies. We illustrate our approach with results for a network representing the folding transition of a tryptophan zipper peptide, which exhibits a separation of characteristic timescales. We highlight some salient features of the dynamics, most notably, strong deviations from two-state behavior, and the existence of multiple competing mechanisms.

1.
J. R.
Norris
,
Markov Chains
(
Cambridge University Press
,
New York, USA
,
1997
).
2.
J.
Goutsias
and
G.
Jenkinson
,
Phys. Rep.
529
,
199
264
(
2013
).
3.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam, The Netherlands
,
1992
).
4.
D. T.
Gillespie
,
Markov Processes: An Introduction for Physical Scientists
(
Academic Press
,
New York, USA
,
1992
).
5.
R.
Zwanzig
,
J. Stat. Phys.
30
,
255
262
(
1983
).
6.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
San Diego, CA
,
2001
).
7.
C.
Chipot
and
A.
Pohorille
,
Free Energy Calculations
(
Springer-Verlag
,
Berlin, Germany
,
2007
).
8.
J. D.
Chodera
and
F.
Noé
,
Curr. Opin. Struct. Biol.
25
,
135
144
(
2014
).
9.
J. A.
Joseph
,
K.
Röder
,
D.
Chakraborty
,
R. G.
Mantell
, and
D. J.
Wales
,
Chem. Commun.
53
,
6974
6988
(
2017
).
10.
K.
Röder
,
J. A.
Joseph
,
B. E.
Husic
, and
D. J.
Wales
,
Adv. Theory Simul.
2
,
1800175
(
2019
).
11.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge, UK
,
2003
).
12.
F.
Noé
and
J. C.
Smith
, “
Transition networks: A unifying theme for molecular simulation and computer science
,” in
Mathematical Modeling of Biological Systems
, edited by
A.
Deutsch
,
L.
Brusch
,
J.
Byrne
,
G.
de Vries
, and
H.-P.
Herzel
(
Birkhäuser
,
Boston
,
2007
), Vol. 1, pp.
125
144
.
13.
F.
Noé
and
S.
Fischer
,
Curr. Opin. Struct. Biol.
18
,
154
162
(
2008
).
14.
D. J.
Wales
,
Mol. Phys.
100
,
3285
3305
(
2002
).
15.
D. J.
Wales
,
Mol. Phys.
102
,
891
908
(
2004
).
16.
D. J.
Wales
and
P.
Salamon
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
617
622
(
2014
).
17.
A.
Mardt
,
L.
Pasquali
,
J.
Wu
, and
F.
Noé
,
Nat. Commun.
9
,
5
(
2018
).
18.
A.
Ma
and
A. R.
Dinner
,
J. Phys. Chem. B
109
,
6769
6779
(
2005
).
19.
C.
Dellago
,
P. G.
Bolhuis
, and
P. L.
Geissler
,
Adv. Chem. Phys.
123
,
1
78
(
2002
).
20.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
21.
N. M.
Amato
,
K. A.
Dill
, and
G.
Song
,
J. Comput. Biol.
10
,
239
255
(
2003
).
22.
M. S.
Apaydin
,
D. L.
Brutlag
,
C.
Guestrin
,
D.
Hsu
,
J.-C.
Latombe
, and
C.
Varma
,
J. Comput. Biol.
10
,
257
281
(
2003
).
23.
S. V.
Krivov
and
M.
Karplus
,
J. Phys. Chem. B
110
,
12689
12698
(
2006
).
24.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
,
J. Phys. Chem. B
108
,
6571
6581
(
2004
).
25.
N.
Singhal
,
C. D.
Snow
, and
V. S.
Pande
,
J. Chem. Phys.
121
,
415
425
(
2004
).
26.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
,
J. Chem. Phys.
126
,
155102
(
2007
).
27.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
19016
(
2009
).
28.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. C.
Swope
,
J. Chem. Phys.
126
,
155101
(
2007
).
29.
N.-V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
6069
(
2008
).
30.
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
, 1st ed., edited by
G. R.
Bowman
,
V. S.
Pande
and
F.
Noé
(
Springer
,
The Netherlands
,
2014
).
31.
C.
Schütte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
134
,
204105
(
2011
).
32.
W.
Zheng
,
M.
Andrec
,
E.
Gallicchio
, and
R. M.
Levy
,
J. Phys. Chem. B
113
,
11702
11709
(
2009
).
33.
F.
Rao
and
A.
Caflisch
,
J. Mol. Biol.
342
,
299
306
(
2004
).
34.
F.
Rao
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
9152
9157
(
2010
).
35.
L.
Gong
and
X.
Zhou
,
J. Phys. Chem. B
114
,
10266
10276
(
2010
).
36.
B.
Fačkovec
,
E.
Vanden-Eijnden
, and
D. J.
Wales
,
J. Chem. Phys.
143
,
044119
(
2015
).
37.
G. C.
Boulougouris
and
D. N.
Theodorou
,
J. Chem. Phys.
130
,
044905
(
2009
).
38.
S.
Viswanath
,
S. M.
Kreuzer
,
A. E.
Cardenas
, and
R.
Elber
,
J. Chem. Phys.
139
,
174105
(
2013
).
39.
P. D.
Dixit
,
A.
Jain
,
G.
Stock
, and
K. A.
Dill
,
J. Chem. Theory Comput.
11
,
5464
5472
(
2015
).
40.
P. D.
Dixit
,
J.
Wagoner
,
C.
Weistuch
,
S.
Pressé
,
K.
Ghosh
, and
K. A.
Dill
,
J. Chem. Phys.
148
,
010901
(
2018
).
41.
P. D.
Dixit
and
K. A.
Dill
,
J. Chem. Phys.
150
,
054105
(
2019
).
42.
D.
Helbing
,
Quantitative Sociodynamics
, 2nd ed. (
Springer-Verlag
,
Berlin
,
2010
).
43.
T.
Székely
, Jr.
and
K.
Burrage
,
Comput. Struct. Biotechnol. J.
12
,
14
25
(
2014
).
44.
D.
Schnoerr
,
G.
Sanguinetti
, and
R.
Grima
,
J. Phys. A: Math. Theor.
50
,
093001
(
2017
).
45.
D. J.
Warne
,
R. E.
Baker
, and
M. J.
Simpson
,
J. R. Soc. Interface
16
,
20180943
(
2019
).
46.
G.
Simoni
,
F.
Reali
,
C.
Priami
, and
L.
Marchetti
,
Wiley Interdiscip. Rev.: Syst. Biol. Med.
11
,
e1459
(
2019
).
47.
R. J.
Allen
,
P. B.
Warren
, and
P. R.
ten Wolde
,
Phys. Rev. Lett.
94
,
018104
(
2005
).
48.
R. M.
Donovan
,
A. J.
Sedgewick
,
J. R.
Faeder
, and
D. M.
Zuckerman
,
J. Chem. Phys.
139
,
115105
(
2013
).
49.
R. M.
Donovan
,
J.-J.
Tapia
,
D. P.
Sullivan
,
J. R.
Faeder
,
R. F.
Murphy
,
M.
Dittrich
, and
D. M.
Zuckerman
,
PLoS Comput. Biol.
12
,
e1004611
(
2016
).
50.
B. K.
Chu
,
M. J.
Tse
,
R. R.
Sato
, and
E. L.
Read
,
BMC Syst. Biol.
11
,
14
(
2017
).
51.
M. J.
Tse
,
B. K.
Chu
,
C. P.
Gallivan
, and
E. L.
Read
,
PLoS Comput. Biol.
14
,
e1006336
(
2018
).
52.
L. J. S.
Allen
, “
An introduction to stochastic epidemic models
,” in
Mathematical Epidemiology
, edited by
F.
Brauer
,
P.
van den Driessche
, and
J.
Wu
(
Springer-Verlag
,
Berlin
,
2008
), pp.
81
130
.
53.
L. J. S.
Allen
,
An Introduction to Stochastic Processes with Applications to Biology
(
Prentice-Hall
,
Upper Saddle River, NJ
,
2003
).
54.
B.
Munsky
and
M.
Khammash
,
J. Chem. Phys.
124
,
044104
(
2006
).
55.
K. N.
Dinh
and
R. B.
Sidje
,
Phys. Biol.
13
,
035003
(
2016
).
56.
S. A.
Trygubenko
and
D. J.
Wales
,
Mol. Phys.
104
,
1497
1507
(
2006
).
57.
S. A.
Trygubenko
and
D. J.
Wales
,
J. Chem. Phys.
124
,
234110
(
2006
).
58.
D. J.
Wales
,
Int. Rev. Phys. Chem.
25
,
237
282
(
2006
).
59.
D. J.
Wales
,
J. Chem. Phys.
130
,
204111
(
2009
).
60.
J. D.
Stevenson
and
D. J.
Wales
,
J. Chem. Phys.
141
,
041104
(
2014
).
61.
R. S.
MacKay
and
J. D.
Robinson
,
Philos. Trans. R. Soc., A
376
,
20170232
(
2018
).
62.
M.
Manhart
and
A. V.
Morozov
,
Phys. Rev. Lett.
111
,
088102
(
2013
).
63.
M.
Manhart
,
W.
Kion-Crosby
, and
A. V.
Morozov
,
J. Chem. Phys.
143
,
214106
(
2015
).
64.
D. A.
Evans
and
D. J.
Wales
,
J. Chem. Phys.
121
,
1080
1090
(
2004
).
65.
J. M.
Carr
and
D. J.
Wales
, “
The energy landscape as a computational tool
,” in
Latest Advances in Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale
, edited by
A.
Solov’yov
and
J.-P.
Connerade
(
Imperial College Press
,
London
,
2008
), pp.
321
330
.
66.
D. J.
Sharpe
and
D. J.
Wales
,
J. Chem. Phys.
151
,
124101
(
2019
).
67.
T. J.
Frankcombe
and
S. C.
Smith
,
Theor. Chem. Acc.
124
,
303
317
(
2009
).
68.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
2896
(
2018
).
69.
D. T.
Gillespie
,
J. Chem. Phys.
113
,
297
306
(
2000
).
70.
D. T.
Gillespie
,
A.
Hellander
, and
L. R.
Petzold
,
J. Chem. Phys.
138
,
170901
(
2013
).
71.
D.
Schultz
,
A. M.
Walczak
,
J. N.
Onuchic
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
19165
19170
(
2008
).
72.
K. A.
Fichthorn
and
Y.
Lin
,
J. Chem. Phys.
138
,
164104
(
2013
).
73.
K. A.
Fichthorn
and
W. H.
Weinberg
,
J. Chem. Phys.
95
,
1090
1096
(
1991
).
74.
A. F.
Voter
, “
Introduction to the kinetic Monte Carlo method
,” in
Radiation Effects in Solids
, edited by
K. E.
Sickafus
and
E. A.
Kotomin
(
Springer
,
Dordrecht, The Netherlands
,
2005
), pp.
1
23
.
75.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
, 3rd ed. (
Cambridge University Press
,
Cambridge, UK
,
2009
).
76.
A. P. J.
Jansen
,
An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions
(
Springer Berlin
,
Heidelberg, Germany
,
2012
).
77.
H. M.
Cuppen
,
L. J.
Karssemeijer
, and
T.
Lamberts
,
Chem. Rev.
113
,
8840
8871
(
2013
).
78.
M.
Andersen
,
C.
Panosetti
, and
K.
Reuter
,
Front. Chem.
7
,
00202
(
2019
).
79.
D. R.
Mason
,
R. E.
Rudd
, and
A. P.
Sutton
,
Comput. Phys. Commun.
160
,
140
157
(
2004
).
80.
V. V.
Bulatov
,
T.
Oppelstrup
, and
M.
Athènes
, “
A new class of accelerated kinetic Monte Carlo algorithms
,” Technical Report No. LLNL-TR-517795,
Lawrence Livermore National Laboratory
,
2011
.
81.
L.
Xu
and
G.
Henkelman
,
J. Chem. Phys.
129
,
114104
(
2008
).
82.
F.
El-Mellouhi
,
N.
Mousseau
, and
L. J.
Lewis
,
Phys. Rev. B
78
,
153202
(
2008
).
83.
J. D.
Muñoz
,
M. A.
Novotny
, and
S. J.
Mitchell
,
Phys. Rev. E
67
,
026101
(
2003
).
84.
S. A.
Serebrinsky
,
Phys. Rev. E
83
,
037701
(
2011
).
85.
A. B.
Bortz
,
M. H.
Kalos
, and
J. L.
Lebowitz
,
J. Comput. Phys.
17
,
10
18
(
1975
).
86.
D. T.
Gillespie
,
J. Comput. Phys.
22
,
403
434
(
1976
).
87.
D. T.
Gillespie
,
J. Phys. Chem.
81
,
2340
2361
(
1977
).
88.
D. T.
Gillespie
,
Annu. Rev. Phys. Chem.
58
,
35
55
(
2007
).
89.
J. T.
Berryman
and
T.
Schilling
,
J. Chem. Phys.
133
,
244101
(
2010
).
90.
D. M.
Zuckerman
and
T. B.
Woolf
,
J. Chem. Phys.
111
,
9475
9484
(
1999
).
91.
P. B.
Warren
and
R. J.
Allen
,
Mol. Phys.
116
,
3104
3113
(
2018
).
92.
A.
Warmflash
,
P.
Bhimalapuram
, and
A. R.
Dinner
,
J. Chem. Phys.
127
,
154112
(
2007
).
93.
R. J.
Allen
,
C.
Valeriani
, and
P. R.
ten Wolde
,
J. Phys.: Condens. Matter
21
,
463102
(
2009
).
94.
A. K.
Faradjian
and
R.
Elber
,
J. Chem. Phys.
120
,
10880
10889
(
2004
).
95.
D. M.
Zuckerman
and
L. T.
Chong
,
Annu. Rev. Biophys.
46
,
43
57
(
2017
).
96.
E.
Vanden-Eijnden
and
M.
Venturoli
,
J. Chem. Phys.
131
,
044120
(
2009
).
97.
M. A.
Novotny
,
Phys. Rev. Lett.
74
,
1
5
(
1995
).
98.
M. A.
Novotny
,
Comput. Phys. Commun.
147
,
659
664
(
2002
).
99.
M. A.
Novotny
, “
A tutorial on advanced dynamic Monte Carlo methods for systems with discrete state spaces
,” in
Annual Reviews of Computational Physics
, edited by
D.
Stauffer
(
World Scientific
,
Singapore
,
2001
), Vol. 9, pp.
153
210
.
100.
C. S.
Deo
and
D. J.
Srolovitz
,
Modell. Simul. Mater. Sci. Eng.
10
,
581
596
(
2002
).
101.
B.
Puchala
,
M. L.
Falk
, and
K.
Garikipati
,
J. Chem. Phys.
132
,
134104
(
2010
).
102.
M.
Athènes
,
P.
Bellon
, and
G.
Martin
,
Philos. Mag. A
76
,
565
585
(
1997
).
103.
G. C.
Boulougouris
and
D.
Frenkel
,
J. Chem. Theory Comput.
1
,
389
393
(
2005
).
104.
G. C.
Boulougouris
and
D. N.
Theodorou
,
J. Chem. Phys.
127
,
084903
(
2007
).
105.
A.
Chatterjee
and
A. F.
Voter
,
J. Chem. Phys.
132
,
194101
(
2010
).
106.
W.
Cai
,
M. H.
Kalos
,
M.
de Koning
, and
V. V.
Bulatov
,
Phys. Rev. E
66
,
046703
(
2002
).
107.
M.
de Koning
,
W.
Cai
,
B.
Sadigh
,
T.
Oppelstrup
,
M. H.
Kalos
, and
V. V.
Bulatov
,
J. Chem. Phys.
122
,
074103
(
2005
).
108.
D. T.
Gillespie
,
J. Chem. Phys.
115
,
1716
1733
(
2001
).
109.
A.
Chatterjee
,
D. G.
Vlachos
, and
M. A.
Katsoulakis
,
J. Chem. Phys.
122
,
024112
(
2005
).
110.
D. F.
Anderson
and
D. J.
Higham
,
Multiscale Model. Simul.
10
,
146
179
(
2012
).
111.
C.
Lester
,
C. A.
Yates
,
M. B.
Giles
, and
R. E.
Baker
,
J. Chem. Phys.
142
,
024113
(
2015
).
112.
M. B.
Giles
, “
Multilevel Monte Carlo methods
,” in
Monte Carlo and Quasi-Monte Carlo Methods 2012
, edited by
J.
Dick
,
F. Y.
Kuo
,
G. W.
Peters
, and
I. H.
Sloan
(
Springer Berlin
,
Heidelberg, Germany
,
2013
), pp.
83
103
.
113.
D. F.
Anderson
,
D. J.
Higham
, and
Y.
Sun
,
SIAM J. Numer. Anal.
52
,
3106
3127
(
2014
).
114.
V.
Wolf
,
R.
Goel
,
M.
Mateescu
, and
T. A.
Henzinger
,
BMC Syst. Biol.
4
,
42
(
2010
).
115.
C. H. L.
Beentjes
and
R. E.
Baker
,
J. Chem. Phys.
150
,
154107
(
2019
).
116.
A.
Milias-Argeitis
and
J.
Lygeros
,
J. Chem. Phys.
138
,
184109
(
2013
).
117.
D.
Frenkel
,
Proc. Natl. Acad. Sci. U. S. A.
101
,
17571
17575
(
2004
).
118.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
,
J. Chem. Phys.
124
,
024102
(
2006
).
119.
M.
Athènes
, “
Conditioning and enhanced sampling schemes for simulating thermodynamic and kinetic properties of condensed matter
,” Technical Report No. tel-01851686,
Université Paris Saclay, Université Paris Sud
,
2018
.
120.
G.
Korniss
,
M. A.
Novotny
, and
P. A.
Rikvold
,
J. Comput. Phys.
153
,
488
508
(
1999
).
121.
A.
Chatterjee
and
D. G.
Vlachos
,
J. Chem. Phys.
124
,
064110
(
2006
).
122.
D. R.
Mason
,
R. E.
Rudd
, and
A. P.
Sutton
,
Prog. Mater. Sci.
52
,
319
332
(
2007
).
123.
A.
Slepoy
,
A. P.
Thompson
, and
S. J.
Plimpton
,
J. Chem. Phys.
128
,
205101
(
2008
).
124.
P.
Terrier
,
M.
Athènes
,
T.
Jourdan
,
G.
Adjanor
, and
G.
Stoltz
,
J. Comput. Phys.
350
,
280
295
(
2017
).
125.
D.
Perez
,
B. P.
Uberuaga
, and
A. F.
Voter
,
Comput. Mater. Sci.
100
,
90
103
(
2015
).
126.
H.
Resat
,
H. S.
Wiley
, and
D. A.
Dixon
,
J. Phys. Chem. B
105
,
11026
11034
(
2001
).
127.
M. A.
Snyder
,
A.
Chatterjee
, and
D. G.
Vlachos
,
Comput. Chem. Eng.
29
,
701
712
(
2005
).
128.
J.
Goutsias
,
J. Chem. Phys.
122
,
184102
(
2005
).
129.
A.
Samant
and
D. G.
Vlachos
,
J. Chem. Phys.
123
,
144114
(
2005
).
130.
W.
E
,
D.
Liu
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
123
,
194107
(
2005
).
131.
W.
E
,
D.
Liu
, and
E.
Vanden-Eijnden
,
J. Comput. Phys.
221
,
158
180
(
2007
).
132.
A.
La Magna
and
S.
Coffa
,
Comput. Mater. Sci.
17
,
21
33
(
2000
).
133.
C. D.
Van Siclen
,
J. Phys.: Condens. Matter
19
,
072201
(
2007
).
134.
G. A.
Huber
and
S.
Kim
,
Biophys. J.
70
,
97
110
(
1996
).
135.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
,
J. Chem. Phys.
132
,
054107
(
2010
).
136.
D.
Bhatt
,
B. W.
Zhang
, and
D. M.
Zuckerman
,
J. Chem. Phys.
133
,
014110
(
2010
).
137.
E.
Suárez
,
S.
Lettieri
,
M. C.
Zwier
,
C. A.
Stringer
,
S. R.
Subramanian
,
L. T.
Chong
, and
D. M.
Zuckerman
,
J. Chem. Theory Comput.
10
,
2658
2667
(
2014
).
138.
H.
Feng
,
R.
Costaouec
,
E.
Darve
, and
J. A.
Izaguirre
,
J. Chem. Phys.
142
,
214113
(
2015
).
139.
L. T.
Chong
,
A. S.
Saglam
, and
D. M.
Zuckerman
,
Curr. Opin. Struct. Biol.
43
,
88
94
(
2017
).
140.
A.
Rojnuckarin
,
S.
Kim
, and
S.
Subramaniam
,
Proc. Natl. Acad. Sci. U. S. A.
95
,
4288
4292
(
1998
).
141.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
18043
18048
(
2007
).
142.
J. L.
Adelman
,
A. L.
Dale
,
M. C.
Zwier
,
D.
Bhatt
,
L. T.
Chong
,
D. M.
Zuckerman
, and
M.
Grabe
,
Biophys. J.
101
,
2399
2407
(
2011
).
143.
A.
Dickson
,
A. M.
Mustoe
,
L.
Salmon
, and
C. L.
Brooks
,
Nucleic Acids Res.
42
,
12126
12137
(
2014
).
144.
A. S.
Saglam
and
L. T.
Chong
,
J. Phys. Chem. B
120
,
117
122
(
2016
).
145.
M. C.
Zwier
,
A. J.
Pratt
,
J. L.
Adelman
,
J. W.
Kaus
,
D. M.
Zuckerman
, and
L. T.
Chong
,
J. Phys. Chem. Lett.
7
,
3440
3445
(
2016
).
146.
A. S.
Saglam
and
L. T.
Chong
,
Chem. Sci.
10
,
2360
2372
(
2019
).
147.
M. C.
Zwier
and
L. T.
Chong
,
Curr. Opin. Pharmacol.
10
,
745
752
(
2010
).
148.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
, “
Weighted ensemble path sampling for multiple reaction channels
,” arXiv:0902.2772 (
2009
).
149.
M.
Athènes
and
V. V.
Bulatov
,
Phys. Rev. Lett.
113
,
230601
(
2014
).
150.
M.
Athènes
,
S.
Kaur
,
G.
Adjanor
,
T.
Vanacker
, and
T.
Jourdan
,
Phys. Rev. Mater.
3
,
103802
(
2019
).
151.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
,
J. Chem. Phys.
126
,
074504
(
2007
).
152.
V.
Satuluri
and
S.
Parthasarathy
, in
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(
ACM
,
New York
,
2009
), pp.
737
746
.
153.
V.
Satuluri
and
S.
Parthasarathy
, in
Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology
(
ACM
,
New York
,
2010
), pp.
247
256
.
154.
Y.-K.
Shih
and
S.
Parthasarathy
,
Bioinformatics
28
,
i473
i479
(
2012
).
155.
S.
van Dongen
,
Graph Clustering by Flow Simulation
, Ph.D. thesis,
University of Utrecht
,
2000
.
156.
A. J.
Enright
,
S.
van Dongen
, and
C. A.
Ouzounis
,
Nucleic Acids Res.
30
,
1575
1584
(
2002
).
157.
S.
van Dongen
,
SIAM J. Matrix Anal. Appl.
30
,
121
141
(
2008
).
158.
D. J.
Sharpe
and
D. J.
Wales
, “
Community structure and metastability in dynamical simulations of Markovian networks
,” (unpublished).
159.
J. A.
Joseph
,
C. S.
Whittleston
, and
D. J.
Wales
,
J. Chem. Theory Comput.
12
,
6109
6117
(
2016
).
160.
R. G.
Mantell
,
C. E.
Pitt
, and
D. J.
Wales
,
J. Chem. Theory Comput.
12
,
6182
6191
(
2016
).
161.
B.
Peters
,
Reaction Rate Theory and Rare Events
(
Elsevier
,
Oxford, UK
,
2017
).
162.
D. J.
Wales
,
Annu. Rev. Phys. Chem.
69
,
401
425
(
2018
).
163.
M.
Griffiths
and
D. J.
Wales
,
J. Chem. Theory Comput.
15
,
6865
6881
(
2019
).
164.
D. J.
Wales
,
Curr. Opin. Struct. Biol.
20
,
3
10
(
2010
).
165.
D. J.
Wales
,
Philos. Trans. R. Soc., A
370
,
2877
2899
(
2012
).
166.
T. D.
Swinburne
and
D. J.
Wales
,
J. Chem. Theory Comput.
16
,
2661
2679
(
2020
).
167.
K.
Reuter
, “
First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Concepts, status and frontiers
,” in
Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System
, edited by
O.
Deutschmann
(
Wiley VCH
,
Weinheim, Germany
,
2011
), pp.
71
111
.
168.
T. D.
Swinburne
and
D.
Perez
,
Phys. Rev. Mater.
2
,
053802
(
2018
).
169.
D.
Gfeller
,
P.
De Los Rios
,
A.
Caflisch
, and
F.
Rao
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
1817
1822
(
2007
).
170.
S.
Fortunato
,
Phys. Rep.
486
,
75
174
(
2010
).
171.
D. J.
Sharpe
and
D. J.
Wales
, “
Dimensionality reduction of Markov chains using efficient dynamical simulations
,” (unpublished).
172.
B.
Efron
,
The Jackknife, the Bootstrap and Other Resampling Plans
(
SIAM
,
Philadelphia, PA
,
1982
).
173.
J. S.
Liu
,
Monte Carlo Strategies in Scientific Computing
, 1st ed. (
Springer-Verlag
,
New York, NY, USA
,
2001
).
174.
D.
Aristoff
,
ESAIM: Math. Modell. Numer. Anal.
52
,
1219
1238
(
2018
).
175.
J. L.
Adelman
and
M.
Grabe
,
J. Chem. Phys.
138
,
044105
(
2013
).
176.
E.
Suárez
,
A. J.
Pratt
,
L. T.
Chong
, and
D. M.
Zuckerman
,
Protein Sci.
25
,
67
78
(
2016
).
177.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
,
J. Chem. Phys.
124
,
194111
(
2006
).
178.
C.
Valeriani
,
R. J.
Allen
,
M. J.
Morelli
,
D.
Frenkel
, and
P. R.
ten Wolde
,
J. Chem. Phys.
127
,
114109
(
2007
).
179.
E. E.
Borrero
and
F. A.
Escobedo
,
J. Chem. Phys.
127
,
164101
(
2007
).
180.
N. B.
Becker
,
R. J.
Allen
, and
P. R.
ten Wolde
,
J. Chem. Phys.
136
,
174118
(
2012
).
181.
N. B.
Becker
and
P. R.
ten Wolde
,
J. Chem. Phys.
136
,
174119
(
2012
).
182.
D.
Bhatt
and
I.
Bahar
,
J. Chem. Phys.
137
,
104101
(
2012
).
183.
T. L.
Hill
,
Free Energy Transduction and Biochemical Cycle Kinetics
(
Springer-Verlag
,
New York, NY, USA
,
1989
).
184.
R.
Zwanzig
,
Proc. Natl. Acad. Sci. U. S. A.
94
,
148
150
(
1997
).
185.
W.
Zheng
,
E.
Gallicchio
,
N.
Deng
,
M.
Andrec
, and
R. M.
Levy
,
J. Phys. Chem. B
115
,
1512
1523
(
2011
).
186.
F.
Marinelli
,
F.
Pietrucci
,
A.
Laio
, and
S.
Piana
,
PLoS Comput. Biol.
5
,
e1000452
(
2009
).
187.
J.
Jurazsek
and
P. G.
Bolhuis
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
15859
15864
(
2006
).
188.
W.
Du
and
P. G.
Bolhuis
,
J. Chem. Phys.
140
,
195102
(
2014
).
189.
G.
Portella
and
M.
Orozco
,
Angew. Chem., Int. Ed.
49
,
7673
7676
(
2010
).
190.
G.
Pinamonti
,
J.
Zhao
,
D. E.
Condon
,
F.
Paul
,
F.
Noè
,
D. H.
Turner
, and
G.
Bussi
,
J. Chem. Theory Comput.
13
,
926
934
(
2017
).
191.
T. D.
Swinburne
,
D.
Kannan
,
D. J.
Sharpe
, and
D. J.
Wales
, “
Rare events and first passage time statistics from the energy landscape
,” (submitted).
192.
H.
Jung
,
K.
Okazaki
, and
G.
Hummer
,
J. Chem. Phys.
147
,
152716
(
2017
).
193.
O. M.
Becker
and
M.
Karplus
,
J. Chem. Phys.
106
,
1495
1517
(
1997
).
194.
D. J.
Wales
,
M. A.
Miller
, and
T. R.
Walsh
,
Nature
394
,
758
760
(
1998
).
195.
P. G.
Bolhuis
and
C.
Dellago
, “
Trajectory-based rare event simulations
,” in
Reviews in Computational Chemistry
, edited by
L.
Lipkowitz
(
Wiley
,
Hoboken, NJ
,
2010
), Vol. 27, pp.
111
210
.
196.
J. M.
Bello-Rivas
and
R.
Elber
,
J. Chem. Phys.
142
,
094102
(
2015
).
197.
A.
Dickson
,
A.
Warmflash
, and
A. R.
Dinner
,
J. Chem. Phys.
130
,
074104
(
2009
).
198.
A.
Dickson
,
A.
Warmflash
, and
A. R.
Dinner
,
J. Chem. Phys.
131
,
154104
(
2009
).
199.
A.
Dickson
and
A. R.
Dinner
,
Annu. Rev. Phys. Chem.
61
,
441
459
(
2010
).
200.
S. X.
Sun
,
Phys. Rev. Lett.
96
,
210602
(
2006
).
201.
B.
Harland
and
S. X.
Sun
,
J. Chem. Phys.
127
,
104103
(
2007
).
202.
T.
Mora
,
A. M.
Walczak
, and
F.
Zamponi
,
Phys. Rev. E
85
,
036710
(
2012
).
203.
N.
Eidelson
and
B.
Peters
,
J. Chem. Phys.
137
,
094106
(
2012
).
204.
N.
Guttenberg
,
A. R.
Dinner
, and
J.
Weare
,
J. Chem. Phys.
136
,
234103
(
2012
).
205.
A. C.
Pan
and
D.
Chandler
,
J. Phys. Chem. B
108
,
19681
19686
(
2004
).
206.
D.
Kannan
,
D. J.
Sharpe
,
T. D.
Swinburne
, and
D. J.
Wales
, “
Dimensionality reduction of Markov chains from mean first passage times using graph transformation
” (unpublished).
207.
B.
Barzel
and
A.-L.
Barabási
,
Nat. Phys.
9
,
673
681
(
2013
).
208.
U.
Harush
and
B.
Barzel
,
Nat. Commun.
8
,
2181
(
2017
).

Supplementary Material

You do not currently have access to this content.