First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, essentially from the compiler up, possibly with the exception of linear-algebra and message-passing libraries. This model has endured and been quite successful for decades. The successful evolution of the electronic structure methodology itself, however, has resulted in an increasing complexity and an ever longer list of features expected within all software packages, which implies a growing amount of replication between different packages, not only in the initial coding but, more importantly, every time a code needs to be re-engineered to adapt to the evolution of computer hardware architecture. The Electronic Structure Library (ESL) was initiated by CECAM (the European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure codes and redesign them as open-source libraries available to everybody. Such libraries include “heavy-duty” ones that have the potential for a high degree of parallelization and adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by, e.g., physicists and chemists when implementing new ideas. We envisage that this modular paradigm will improve overall coding efficiency and enable specialists (whether they be computer scientists or computational scientists) to use their skills more effectively and will lead to a more dynamic evolution of software in the community as well as lower barriers to entry for new developers. The model comes with new challenges, though. The building and compilation of a code based on many interdependent libraries (and their versions) is a much more complex task than that of a code delivered in a single self-contained package. Here, we describe the state of the ESL, the different libraries it now contains, the short- and mid-term plans for further libraries, and the way the new challenges are faced. The ESL is a community initiative into which several pre-existing codes and their developers have contributed with their software and efforts, from which several codes are already benefiting, and which remains open to the community.

1.
P.
Mavropoulos
and
P.
Dederichs
, Statistical data about density functional calculations, Ψk Scientific Highlight of the Month No. 135, https://psi-k.net/download/highlights/Highlight_135.pdf,
April 2017
.
2.
P. A. M.
Dirac
, “
Quantum mechanics of many-electron systems
,”
Proc. R. Soc. London, Ser. A
123
,
714
733
(
1929
).
3.
N.
Mardirossian
and
M.
Head-Gordon
, “
Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals
,”
Mol. Phys.
115
,
2315
2372
(
2017
).
4.
See, https://molssi.org/software-search/ for the Molecular Sciences Software Institute (MolSSI),
2016
.
5.
N.
Wilkins-Diehr
and
T. D.
Crawford
, “
NSF’s inaugural software institutes: The science gateways community institute and the molecular sciences software institute
,”
Comput. Sci. Eng.
20
,
26
38
(
2018
).
6.
A.
Krylov
,
T. L.
Windus
,
T.
Barnes
,
E.
Marin-Rimoldi
,
J. A.
Nash
,
B.
Pritchard
,
D. G. A.
Smith
,
D.
Altarawy
,
P.
Saxe
,
C.
Clementi
,
T. D.
Crawford
,
R. J.
Harrison
,
S.
Jha
,
V. S.
Pande
, and
T.
Head-Gordon
, “
Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science
,”
J. Chem. Phys.
149
,
180901
(
2018
).
7.
See http://www.netlib.org/blas/blast-forum for BLAS technical forum,
1979
.
8.
See https://www.mpi-forum.org for EMPI forum, since 1991.
9.
E.
Anderson
,
Z.
Bai
,
C.
Bischof
,
L. S.
Blackford
,
J.
Demmel
,
J.
Dongarra
,
J. D.
Croz
,
A.
Greenbaum
,
S.
Hammarling
,
A.
McKenney
, and
D.
Sorensen
,
LAPACK Users’ Guide
(
SIAM
,
1999
).
10.
See http://www.netlib.org/scalapack for ScaLAPACK, since 1992.
11.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
,
216
231
(
2005
), special issue on Program Generation, Optimization, and Platform Adaptation.
12.
A.
Togo
and
I.
Tanaka
, “
Spglib: A software library for crystal symmetry search
,” arXiv:1808.01590 (
2018
).
13.
See https://www.wannier.org/ for the wannier90 code.
14.
N.
Marzari
and
D.
Vanderbilt
, “
Maximally localized generalized Wannier functions for composite energy bands
,”
Phys. Rev. B
56
,
12847
12865
(
1997
).
15.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
16.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
,
B. A.
Helfrecht
,
P.
Juda
,
S. P.
Bienvenue
,
W.
Fang
,
J.
Kessler
,
I.
Poltavsky
,
S.
Vandenbrande
,
J.
Wieme
,
C.
Corminboeuf
,
T. D.
Kühne
,
D. E.
Manolopoulos
,
T. E.
Markland
,
J. O.
Richardson
,
A.
Tkatchenko
,
G. A.
Tribello
,
V.
Van Speybroeck
, and
M.
Ceriotti
, “
i-PI 2.0: A universal force engine for advanced molecular simulations
,”
Comput. Phys. Commun.
236
,
214
223
(
2019
).
17.
G.
Pizzi
,
A.
Cepellotti
,
R.
Sabatini
,
N.
Marzari
, and
B.
Kozinsky
, “
AiiDA: Automated interactive infrastructure and database for computational science
,”
Comput. Mater. Sci.
111
,
218
230
(
2016
).
18.
M. A. L.
Marques
,
M. J. T.
Oliveira
, and
T.
Burnus
, “
Libxc: A library of exchange and correlation functionals for density functional theory
,”
Comput. Phys. Commun.
183
,
2272
2281
(
2012
).
19.
S.
Lehtola
,
C.
Steigemann
,
M. J.
Oliveira
, and
M. A.
Marques
, “
Recent developments in libxc—A comprehensive library of functionals for density functional theory
,”
SoftwareX
7
,
1
5
(
2018
).
20.
21.
X.
Gonze
,
B.
Amadon
,
P.
Anglade
,
J.
Beuken
,
F.
Bottin
,
P.
Boulanger
,
F.
Bruneval
,
D.
Caliste
,
R.
Caracas
,
M.
Côté
,
T.
Deutsch
,
L.
Genovese
,
P.
Ghosez
,
M.
Giantomassi
,
S.
Goedecker
,
D.
Hamann
,
P.
Hermet
,
F.
Jollet
,
G.
Jomard
,
S.
Leroux
,
M.
Mancini
,
S.
Mazevet
,
M.
Oliveira
,
G.
Onida
,
Y.
Pouillon
,
T.
Rangel
,
G.
Rignanese
,
D.
Sangalli
,
R.
Shaltaf
,
M.
Torrent
,
M.
Verstraete
,
G.
Zerah
, and
J.
Zwanziger
, “
ABINIT: First-principles approach to material and nanosystem properties
,”
Comput. Phys. Commun.
180
,
2582
2615
(
2009
).
22.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
, “
The SIESTA method for ab initio order-N materials simulation
,”
J. Phys.: Condens. Matter
14
,
2745
2779
(
2002
).
23.
N.
Tancogne-Dejean
,
M. J. T.
Oliveira
,
X.
Andrade
,
H.
Appel
,
C. H.
Borca
,
G.
Le Breton
,
F.
Buchholz
,
A.
Castro
,
S.
Corni
,
A. A.
Correa
,
U.
De Giovannini
,
A.
Delgado
,
F. G.
Eich
,
J.
Flick
,
G.
Gil
,
A.
Gomez
,
N.
Helbig
,
H.
Hübener
,
R.
Jestädt
,
J.
Jornet-Somoza
,
A. H.
Larsen
,
I. V.
Lebedeva
,
M.
Lüders
,
M. A. L.
Marques
,
S. T.
Ohlmann
,
S.
Pipolo
,
M.
Rampp
,
C. A.
Rozzi
,
D. A.
Strubbe
,
S. A.
Sato
,
C.
Schäfer
,
I.
Theophilou
,
A.
Welden
, and
A.
Rubio
, “
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
,”
J. Chem. Phys.
152
,
124119
(
2020
).
24.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A.
Dal Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A.
Otero-de-la-Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
25.
L.
Genovese
,
A.
Neelov
,
S.
Goedecker
,
T.
Deutsch
,
S. A.
Ghasemi
,
A.
Willand
,
D.
Caliste
,
O.
Zilberberg
,
M.
Rayson
,
A.
Bergman
, and
R.
Schneider
, “
Daubechies wavelets as a basis set for density functional pseudopotential calculations
,”
J. Chem. Phys.
129
,
014109
(
2008
).
26.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
2196
(
2009
).
27.
J. J.
Mortensen
,
L. B.
Hansen
, and
K. W.
Jacobsen
, “
Real-space grid implementation of the projector augmented wave method
,”
Phys. Rev. B
71
,
035109
(
2005
).
28.
D. M.
Ritchie
, The development of the C language, https://www.bell-labs.com/usr/dmr/www/chist.html,
1993
.
29.
R. M.
Martin
,
Electronic Structure: Basic Theory and Practical Methods
(
Cambridge University Press
,
Cambridge
,
2004
).
30.
D. R.
Hamann
, “
Optimized norm-conserving Vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
31.
See https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html for the GNU General Public License, version 2.0.
32.
See https://www.gnu.org/licenses/gpl-3.0.en.html for the GNU General Public License, version 3.0.
33.
See https://www.gnu.org/licenses/lgpl-3.0.en.html for the GNU Lesser General Public License, version 3.0.
34.
See https://www.mozilla.org/MPL/2.0 for Mozilla Public License version 2.0.
35.
See https://opensource.org/licenses/MIT for the MIT license.
36.
See https://spdx.org/licenses/CECILL-C.html for the CeCILL-C Free Software License Agreement.
37.
See https://opensource.org/licenses/BSD-2-Clause for 2-clause BSD license.
38.
See https://opensource.org/licenses/BSD-3-Clause for 3-clause BSD license.
39.
R. W.
Hockney
, “
Potential calculation and some applications
,”
Methods Comput. Phys.
9
,
135
211
(
1970
).
40.
L.
Füsti-Molnar
and
P.
Pulay
, “
Accurate molecular integrals and energies using combined plane wave and Gaussian basis sets in molecular electronic structure theory
,”
J. Chem. Phys.
116
,
7795
7805
(
2002
).
41.
G. J.
Martyna
and
M. E.
Tuckerman
, “
A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters
,”
J. Chem. Phys.
110
,
2810
2821
(
1999
).
42.
P.
Mináry
,
M. E.
Tuckerman
,
K. A.
Pihakari
, and
G. J.
Martyna
, “
A new reciprocal space based treatment of long range interactions on surfaces
,”
J. Chem. Phys.
116
,
5351
5362
(
2002
).
43.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
McGraw-Hill
,
1981
).
44.
J. J.
Mortensen
and
M.
Parrinello
, “
A density functional theory study of a silica-supported zirconium monohydride catalyst for depolymerization of polyethylene
,”
J. Phys. Chem. B
104
,
2901
2907
(
2000
).
45.
L.
Genovese
,
T.
Deutsch
,
A.
Neelov
,
S.
Goedecker
, and
G.
Beylkin
, “
Efficient solution of Poisson’s equation with free boundary conditions
,”
J. Chem. Phys.
125
,
074105
(
2006
).
46.
L.
Genovese
,
T.
Deutsch
, and
S.
Goedecker
, “
Efficient and accurate three-dimensional Poisson solver for surface problems
,”
J. Chem. Phys.
127
,
054704
(
2007
).
47.
A.
Cerioni
,
L.
Genovese
,
A.
Mirone
, and
V. A.
Sole
, “
Efficient and accurate solver of the three-dimensional screened and unscreened Poisson’s equation with generic boundary conditions
,”
J. Chem. Phys.
137
,
134108
(
2012
).
48.
G.
Fisicaro
,
L.
Genovese
,
O.
Andreussi
,
N.
Marzari
, and
S.
Goedecker
, “
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
,”
J. Chem. Phys.
144
,
014103
(
2016
).
49.
G.
Fisicaro
,
L.
Genovese
,
O.
Andreussi
,
S.
Mandal
,
N. N.
Nair
,
N.
Marzari
, and
S.
Goedecker
, “
Soft-sphere continuum solvation in electronic-structure calculations
,”
J. Chem. Theory Comput.
13
,
3829
3845
(
2017
).
50.
P.
García-Risueño
,
J.
Alberdi-Rodriguez
,
M. J.
Oliveira
,
X.
Andrade
,
M.
Pippig
,
J.
Muguerza
,
A.
Arruabarrena
, and
A.
Rubio
, “
A survey of the parallel performance and accuracy of Poisson solvers for electronic structure calculations
,”
J. Comput. Chem.
35
,
427
444
(
2014
).
51.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
cp2k: Atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
25
(
2014
).
52.
X.
Andrade
,
J.
Alberdi-Rodriguez
,
D. A.
Strubbe
,
M. J. T.
Oliveira
,
F.
Nogueira
,
A.
Castro
,
J.
Muguerza
,
A.
Arruabarrena
,
S. G.
Louie
,
A.
Aspuru-Guzik
,
A.
Rubio
, and
M. A. L.
Marques
, “
Time-dependent density-functional theory in massively parallel computer architectures: The octopus project
,”
J. Phys.: Condens. Matter
24
,
233202
(
2012
).
53.
M. J.
Gillan
,
D. R.
Bowler
,
A. S.
Torralba
, and
T.
Miyazaki
, “
Order-N first-principles calculations with the CONQUEST code
,”
Comput. Phys. Commun.
177
,
14
18
(
2007
).
54.
N.
Dugan
,
L.
Genovese
, and
S.
Goedecker
, “
A customized 3D GPU Poisson solver for free boundary conditions
,”
Comput. Phys. Commun.
184
,
1815
1820
(
2013
).
55.
L. E.
Ratcliff
,
A.
Degomme
,
J. A.
Flores-Livas
,
S.
Goedecker
, and
L.
Genovese
, “
Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers
,”
J. Phys.: Condens. Matter
30
,
095901
(
2018
).
56.
J. P.
Perdew
, “
Jacob’s ladder of density functional approximations for the exchange-correlation energy
,”
AIP Conf. Proc.
577
,
1
20
(
2001
).
57.
See https://maplesoft.com for Maple, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
58.
X.
Gonze
,
F.
Jollet
,
F.
Abreu Araujo
,
D.
Adams
,
B.
Amadon
,
T.
Applencourt
,
C.
Audouze
,
J.-M.
Beuken
,
J.
Bieder
,
A.
Bokhanchuk
,
E.
Bousquet
,
F.
Bruneval
,
D.
Caliste
,
M.
Côté
,
F.
Dahm
,
F.
Da Pieve
,
M.
Delaveau
,
M.
Di Gennaro
,
B.
Dorado
,
C.
Espejo
,
G.
Geneste
,
L.
Genovese
,
A.
Gerossier
,
M.
Giantomassi
,
Y.
Gillet
,
D. R.
Hamann
,
L.
He
,
G.
Jomard
,
J.
Laflamme Janssen
,
S.
Le Roux
,
A.
Levitt
,
A.
Lherbier
,
F.
Liu
,
I.
Lukačević
,
A.
Martin
,
C.
Martins
,
M. J.
Oliveira
,
S.
Poncé
,
Y.
Pouillon
,
T.
Rangel
,
G.-M.
Rignanese
,
A. H.
Romero
,
B.
Rousseau
,
O.
Rubel
,
A. A.
Shukri
,
M.
Stankovski
,
M.
Torrent
,
M. J.
Van Setten
,
B.
Van Troeye
,
M. J.
Verstraete
,
D.
Waroquiers
,
J.
Wiktor
,
B.
Xu
,
A.
Zhou
, and
J. W.
Zwanziger
, “
Recent developments in the ABINIT software package
,”
Comput. Phys. Commun.
205
,
106
131
(
2016
).
59.
P.
Blaha
,
K.
Schwarz
,
G. K.
Madsen
,
D.
Kvasnicka
,
J.
Luitz
,
R.
Laskowski
,
F.
Tran
, and
L. D.
Marks
,
WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties
(
Technische Universitat
,
2019
), ISBN: 3-950103112.
60.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability
,”
J. Chem. Theory Comput.
13
,
3185
3197
(
2017
).
61.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
62.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K. L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
63.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
, “
Electronic structure calculations on workstation computers: The program system turbomole
,”
Chem. Phys. Lett.
162
,
165
169
(
1989
).
64.
S.
Smidstrup
,
T.
Markussen
,
P.
Vancraeyveld
,
J.
Wellendorff
,
J.
Schneider
,
T.
Gunst
,
B.
Verstichel
,
D.
Stradi
,
P. A.
Khomyakov
,
U. G.
Vej-Hansen
,
M.-E.
Lee
,
S. T.
Chill
,
F.
Rasmussen
,
G.
Penazzi
,
F.
Corsetti
,
A.
Ojanperä
,
K.
Jensen
,
M. L. N.
Palsgaard
,
U.
Martinez
,
A.
Blom
,
M.
Brandbyge
, and
K.
Stokbro
, “
QuantumATK: An integrated platform of electronic and atomic-scale modelling tools
,”
J. Phys.: Condens. Matter
32
,
015901
(
2019
).
65.
P.
Borlido
,
T.
Aull
,
A. W.
Huran
,
F.
Tran
,
M. A. L.
Marques
, and
S.
Botti
, “
Large-scale benchmark of exchange–correlation functionals for the determination of electronic band gaps of solids
,”
J. Chem. Theory Comput.
15
,
5069
5079
(
2019
).
66.
A. H.
Larsen
,
M.
Kuisma
,
J.
Löfgren
,
Y.
Pouillon
,
P.
Erhart
, and
P.
Hyldgaard
, “
libvdwxc: A library for exchange–correlation functionals in the vdW-DF family
,”
Modell. Simul. Mater. Sci. Eng.
25
,
065004
(
2017
).
67.
K.
Berland
,
V. R.
Cooper
,
K.
Lee
,
E.
Schröder
,
T.
Thonhauser
,
P.
Hyldgaard
, and
B. I.
Lundqvist
, “
van der Waals forces in density functional theory: A review of the vdW-DF method
,”
Rep. Prog. Phys.
78
,
066501
(
2015
).
68.
P.
Hyldgaard
,
K.
Berland
, and
E.
Schröder
, “
Interpretation of van der Waals density functionals
,”
Phys. Rev. B
90
,
075148
(
2014
).
69.
D. C.
Langreth
,
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
P.
Hyldgaard
, and
B. I.
Lundqvist
, “
van der Waals density functional theory with applications
,”
Int. J. Quantum Chem.
101
,
599
610
(
2005
).
70.
D. C.
Langreth
,
B. I.
Lundqvist
,
S. D.
Chakarova-Käck
,
V. R.
Cooper
,
M.
Dion
,
P.
Hyldgaard
,
A.
Kelkkanen
,
J.
Kleis
,
L.
Kong
,
S.
Li
,
P. G.
Moses
,
E.
Murray
,
A.
Puzder
,
H.
Rydberg
,
E.
Schröder
, and
T.
Thonhauser
, “
A density functional for sparse matter
,”
J. Phys.: Condens. Matter
21
,
084203
(
2009
).
71.
K.
Berland
and
P.
Hyldgaard
, “
Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional
,”
Phys. Rev. B
89
,
035412
(
2014
).
72.
T.
Thonhauser
,
S.
Zuluaga
,
C. A.
Arter
,
K.
Berland
,
E.
Schröder
, and
P.
Hyldgaard
, “
Spin signature of nonlocal correlation binding in metal-organic frameworks
,”
Phys. Rev. Lett.
115
,
136402
(
2015
).
73.
G.
Román-Pérez
and
J. M.
Soler
, “
Efficient implementation of a van der Waals density functional: Application to double-wall carbon nanotubes
,”
Phys. Rev. Lett.
103
,
096102
(
2009
).
74.
S. G.
Johnson
and
M.
Frigo
, “
Implementing FFTs in practice
,” in
Fast Fourier Transforms
, edited by
C. S.
Burrus
(
Connex-ions, Rice University
,
Houston, TX
,
2008
), Chap. 11.
75.
M.
Pippig
, “
PFFT: An extension of FFTW to massively parallel architectures
,”
SIAM J. Sci. Comput.
35
,
C213
C236
(
2013
).
77.
F.
Jollet
,
M.
Torrent
, and
N.
Holtzwarth
, XML specification for atomic PAW datasets, https://esl.cecam.org/mediawiki/index.php/paw-xml.
79.
A.
García
,
M. J.
Verstraete
,
Y.
Pouillon
, and
J.
Junquera
, “
The PSML format and library for norm-conserving pseudopotential data curation and interoperability
,”
Comput. Phys. Commun.
227
,
51
71
(
2018
).
80.
See https://siesta-project.github.io/psml-docs; accessed November 2019.
81.
Atom code for the generation of norm-conserving pseudopotentials, the version maintained by the Siesta project can be accessed at http://icmab.es/siesta/Pseudopotentials/index.html, an alternative version is available at http://bohr.inesc-mn.pt/∼jlm/pseudo.html; accessed July 2017.
82.
M. J.
van Setten
,
M.
Giantomassi
,
E.
Bousquet
,
M. J.
Verstraete
,
D. R.
Hamann
,
X.
Gonze
, and
G.-M.
Rignanese
, “
The PSEUDODOJO: Training and grading a 85 element optimized norm-conserving pseudopotential table
,”
Comput. Phys. Commun.
226
,
39
54
(
2018
).
83.
See https://www.pseudo-dojo.org; accessed November 2019.
84.
See https://esl.cecam.org/ESCDF_-_Electronic_Structure_Common_Data_Format for information on the ESCDF format specification.
85.
See https://esl.cecam.org/Libescdf for the libESCDF software, source, and documentation.
86.
D.
Sébilleau
,
C.
Natoli
,
G. M.
Gavaza
,
H.
Zhao
,
F.
Da Pieve
, and
K.
Hatada
, “
MsSpec-1.0: A multiple scattering package for electron spectroscopies in material science
,”
Comput. Phys. Commun.
182
,
2567
2579
(
2011
).
87.
H.
Ebert
,
D.
Ködderitzsch
, and
J.
Minár
, “
Calculating condensed matter properties using the KKR-Green’s function method—Recent developments and applications
,”
Rep. Prog. Phys.
74
,
096501
(
2011
).
88.
H.
Ebert
,
J.
Braun
,
D.
Ködderitzsch
, and
S.
Mankovsky
, “
Fully relativistic multiple scattering calculations for general potentials
,”
Phys. Rev. B
93
,
075145
(
2016
).
89.
See https://www.etsf.eu/ for the ETSF library software, source, specifications, and documentation.
90.
See https://esl.cecam.org/ETSF_File_Format_Specifications for the file format specifications in the ETSF data standard.
91.
See https://www.hdfgroup.org/solutions/hdf5/ for information on the large-scale data format in HDF-5 and its associated library for parallel I/O handling.
92.
J.
Deslippe
,
G.
Samsonidze
,
D. A.
Strubbe
,
M.
Jain
,
M. L.
Cohen
, and
S. G.
Louie
, “
BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures
,”
Comput. Phys. Commun.
183
,
1269
1289
(
2012
).
93.
See https://euspec.eu/ for information on the EUSpec network.
94.
See https://nomad-coe.eu/ for information on the NOMAD project and its data specifications.
95.
V. W.-Z.
Yu
,
F.
Corsetti
,
A.
García
,
W. P.
Huhn
,
M.
Jacquelin
,
W.
Jia
,
B.
Lange
,
L.
Lin
,
J.
Lu
,
W.
Mi
,
A.
Seifitokaldani
,
Á.
Vázquez-Mayagoitia
,
C.
Yang
,
H.
Yang
, and
V.
Blum
, “
ELSI: A unified software interface for Kohn–Sham electronic structure solvers
,”
Comput. Phys. Commun.
222
,
267
285
(
2018
).
96.
A.
Marek
,
V.
Blum
,
R.
Johanni
,
V.
Havu
,
B.
Lang
,
T.
Auckenthaler
,
A.
Heinecke
,
H.-J.
Bungartz
, and
H.
Lederer
, “
The ELPA library: Scalable parallel eigenvalue solutions for electronic structure theory and computational science
,”
J. Phys.: Condens. Matter
26
,
213201
(
2014
).
97.
P.
Ku̇s
,
A.
Marek
,
S. S.
Köcher
,
H.-H.
Kowalski
,
C.
Carbogno
,
C.
Scheurer
,
K.
Reuter
,
M.
Scheffler
, and
H.
Lederer
, “
Optimizations of the eigensolvers in the ELPA library
,”
Parallel Comput.
85
,
167
177
(
2019
).
98.
T.
Imamura
,
S.
Yamada
, and
M.
Machida
, “
Development of a high-performance eigensolver on a peta-scale next-generation supercomputer system
,”
Prog. Nucl. Sci. Technol.
2
,
643
650
(
2011
).
99.
J.
Dongarra
,
M.
Gates
,
A.
Haidar
,
J.
Kurzak
,
P.
Luszczek
,
S.
Tomov
, and
I.
Yamazaki
, “
Accelerating numerical dense linear algebra calculations with GPUs
,” in
Numerical Computations with GPUs
(
Springer
,
2014
), pp.
3
28
.
100.
F.
Corsetti
, “
The orbital minimization method for electronic structure calculations with finite-range atomic basis sets
,”
Comput. Phys. Commun.
185
,
873
883
(
2014
).
101.
V.
Hernandez
,
J. E.
Roman
, and
V.
Vidal
, “
SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems
,”
ACM Trans. Math. Software
31
,
351
362
(
2005
).
102.
L.
Lin
,
M.
Chen
,
C.
Yang
, and
L.
He
, “
Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion
,”
J. Phys.: Condens. Matter
25
,
295501
(
2013
).
103.
W.
Dawson
and
T.
Nakajima
, “
Massively parallel sparse matrix function calculations with NTPoly
,”
Comput. Phys. Commun.
225
,
154
165
(
2018
).
104.
V. W.-Z.
Yu
,
C.
Campos
,
W.
Dawson
,
A.
García
,
V.
Havu
,
B.
Hourahine
,
W. P.
Huhn
,
M.
Jacquelin
,
W.
Jia
,
M.
Keçeli
,
R.
Laasner
,
Y.
Li
,
L.
Lin
,
J.
Lu
,
J.
Moussa
,
J. E.
Roman
,
A.
Vázquez-Mayagoitia
,
C.
Yang
, and
V.
Blum
, “
ELSI—An open infrastructure for electronic structure solvers
,” arXiv:1912.13403 [physics.comp-ph] (
2019
).
105.
B.
Hourahine
,
B.
Aradi
,
V.
Blum
,
F.
Bonafé
,
A.
Buccheri
,
C.
Camacho
,
C.
Cevallos
,
M. Y.
Deshaye
,
T.
Dumitrică
,
A.
Dominguez
,
S.
Ehlert
,
M.
Elstner
,
T.
van der Heide
,
J.
Hermann
,
S.
Irle
,
J. J.
Kranz
,
C.
Köhler
,
T.
Kowalczyk
,
T.
Kubař
,
I. S.
Lee
,
V.
Lutsker
,
R. J.
Maurer
,
S. K.
Min
,
I.
Mitchell
,
C.
Negre
,
T. A.
Niehaus
,
A. M. N.
Niklasson
,
A. J.
Page
,
A.
Pecchia
,
G.
Penazzi
,
M. P.
Persson
,
J.
Řezáč
,
C. G.
Sánchez
,
M.
Sternberg
,
M.
Stöhr
,
F.
Stuckenberg
,
A.
Tkatchenko
,
V. W.-Z.
Yu
, and
T.
Frauenheim
, “
DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
,”
J. Chem. Phys.
152
,
124101
(
2020
).
106.
W.
Hu
,
L.
Lin
, and
C.
Yang
, “
DGDFT: A massively parallel method for large scale density functional theory calculations
,”
J. Chem. Phys.
143
,
124110
(
2015
).
107.
E.
Vecharynski
,
C.
Yang
, and
J. E.
Pask
, “
A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix
,”
J. Comput. Phys.
290
,
73
89
(
2015
).
108.
Y.
Pan
,
X.
Dai
,
S.
de Gironcoli
,
X.-G.
Gong
,
G.-M.
Rignanese
, and
A.
Zhou
, “
A parallel orbital-updating based plane-wave basis method for electronic structure calculations
,”
J. Comput. Phys.
348
,
482
492
(
2017
).
110.
G. H.
Wannier
, “
The structure of electronic excitation levels in insulating crystals
,”
Phys. Rev.
52
,
191
(
1937
).
111.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
1475
(
2012
).
112.
C.
Brouder
,
G.
Panati
,
M.
Calandra
,
C.
Mourougane
, and
N.
Marzari
, “
Exponential localization of Wannier functions in insulators
,”
Phys. Rev. Lett.
98
,
046402
(
2007
).
113.
I.
Souza
,
N.
Marzari
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions for entangled energy bands
,”
Phys. Rev. B
65
,
035109
(
2001
).
114.
G.
Pizzi
,
V.
Vitale
,
R.
Arita
,
S.
Blügel
,
F.
Freimuth
,
G.
Géranton
,
M.
Gibertini
,
D.
Gresch
,
C.
Johnson
,
T.
Koretsune
,
J.
Ibañez-Azpiroz
,
H.
Lee
,
J.-M.
Lihm
,
D.
Marchand
,
A.
Marrazzo
,
Y.
Mokrousov
,
J. I.
Mustafa
,
Y.
Nomura
,
Y.
Nohara
,
L.
Paulatto
,
S.
Poncé
,
T.
Ponweiser
,
J.
Qiao
,
F.
Thöle
,
S. S.
Tsirkin
,
M.
Wierzbowska
,
N.
Marzari
,
D.
Vanderbilt
,
I.
Souza
,
A. A.
Mostofi
, and
J. R.
Yates
, “
Wannier90 as a community code: New features and applications
,”
J. Phys.: Condens. Matter
32
,
165902
(
2020
).
115.
See https://github.com/wannier-developers/wannier90 for the wannier90 GitHub repository.
116.
A. A.
Mostofi
,
J. R.
Yates
,
Y.-S.
Lee
,
I.
Souza
,
D.
Vanderbilt
, and
N.
Marzari
, “
Wannier90: A tool for obtaining maximally-localised Wannier functions
,”
Comput. Phys. Commun.
178
,
685
699
(
2008
).
117.
V.
Vitale
,
G.
Pizzi
,
A.
Marrazzo
,
J. R.
Yates
,
N.
Marzari
, and
A. A.
Mostofi
, “
Automated high-throughput Wannierisation
,”
npj Comput. Mat.
6
,
66
(
2020
).
118.
A.
Damle
,
L.
Lin
, and
L.
Ying
, “
Compressed representation of Kohn–Sham orbitals via selected columns of the density matrix
,”
J. Chem. Theory Comput.
11
,
1463
1469
(
2015
).
119.
A.
Damle
and
L.
Lin
, “
Disentanglement via entanglement: A unified method for Wannier localization
,”
Multiscale Model. Simul.
16
,
1392
1410
(
2018
).
120.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
121.
S.
Blügel
and
G.
Bihlmayer
, “
Full-potential linearized augmented planewave method
,” in
Computational Nanoscience: Do it Yourself!
, edited by
J.
Grotendorst
,
S.
Blügel
, and
D.
Marx
(
John von Neumann Institute for Computing
,
Jülich
,
2006
), Vol. 31, pp.
85
129
.
122.
See https://elk.sourceforge.net for the Elk code,
2019
.
123.
H.
Weng
,
T.
Ozaki
, and
K.
Terakura
, “
Revisiting magnetic coupling in transition-metal-benzene complexes with maximally localized Wannier functions
,”
Phys. Rev. B
79
,
235118
(
2009
).
124.
J.
Ferrer
,
C. J.
Lambert
,
V. M.
García-Suárez
,
D. Z.
Manrique
,
D.
Visontai
,
L.
Oroszlany
,
R.
Rodríguez-Ferradás
,
I.
Grace
,
S. W. D.
Bailey
,
K.
Gillemot
,
H.
Sadeghi
, and
L. A.
Algharagholy
, “
GOLLUM: A next-generation simulation tool for electron, thermal and spin transport
,”
New J. Phys.
16
,
093029
(
2014
).
125.
Q.
Wu
,
S.
Zhang
,
H.-F.
Song
,
M.
Troyer
, and
A. A.
Soluyanov
, “
Wanniertools: An open-source software package for novel topological materials
,”
Comput. Phys. Commun.
224
,
405
416
(
2018
).
126.
See https://vides.nanotcad.com for NanoTCAD ViDES.
127.
A.
Marini
,
C.
Hogan
,
M.
Grüning
, and
D.
Varsano
, “
yambo: An ab initio tool for excited state calculations
,”
Comput. Phys. Commun.
180
,
1392
1403
(
2009
).
128.
D.
Gresch
,
G.
Autès
,
O. V.
Yazyev
,
M.
Troyer
,
D.
Vanderbilt
,
B. A.
Bernevig
, and
A. A.
Soluyanov
, “
Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials
,”
Phys. Rev. B
95
,
075146
(
2017
).
129.
O.
Parcollet
,
M.
Ferrero
,
T.
Ayral
,
H.
Hafermann
,
I.
Krivenko
,
L.
Messio
, and
P.
Seth
, “
TRIQS: A toolbox for research on interacting quantum systems
,”
Comput. Phys. Commun.
196
,
398
415
(
2015
).
130.
S.
Poncé
,
E.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions
,”
Comput. Phys. Commun.
209
,
116
133
(
2016
).
131.
See https://www.buildbot.net for Buildbot.
132.
See https://www.travis-ci.org for Travis-CI.
133.
See https://en.wikipedia.org/wiki/Ouroboros for Ouroboros Wikipedia, the free encyclopedia; accessed 21 April 2020.
134.
F.
Corsetti
,
A. A.
Mostofi
, and
J.
Lischner
, “
First-principles multiscale modelling of charged adsorbates on doped graphene
,”
2D Materials
4
,
025070
(
2017
).
136.
U.
Borštnik
,
J.
VandeVondele
,
V.
Weber
, and
J.
Hutter
, “
Sparse matrix multiplication: The distributed block-compressed sparse row library
,”
Parallel Comput.
40
,
47
58
(
2014
).
137.
138.
P.
Ordejón
,
D. A.
Drabold
,
R. M.
Martin
, and
M. P.
Grumbach
, “
Linear system-size scaling methods for electronic-structure calculations
,”
Phys. Rev. B
51
,
1456
(
1995
).
139.
D. R.
Bowler
and
T.
Miyazaki
, “
Methods in electronic structure calculations
,”
Rep. Prog. Phys.
75
,
036503
(
2012
).
140.
R.
Ierusalimschy
,
Programming in Lua
, 4th ed. (
Feisty Duck Digital Book Distribution
,
2016
).
142.
See https://en.wikipedia.org/wiki/Simple_API_for_XML for SAX, Simple API for XML.
143.
See https://wiki.gnome.org/Projects/Jhbuild for Jhbuild, since 2003.
144.
See https://www.gnome.org for Gnome project, since 1999.
145.
D.
Alvarez
,
A.
O’Cais
,
M.
Geimer
, and
K.
Hoste
, “
Scientific software management in real life: Deployment of easybuild on a large scale system
,” in
2016 Third International Workshop on HPC User Support Tools (HUST)
(
(IEEE Press/Wiley and Sons, Hoboken, NJ
,
2016
), pp.
31
40
, ISBN: 978-1-5090-3874-9.
146.
See https://yaml.org for Yaml, since 2001.
147.
S.
Mohr
,
W.
Dawson
,
M.
Wagner
,
D.
Caliste
,
T.
Nakajima
, and
L.
Genovese
, “
Efficient computation of sparse matrix functions for large-scale electronic structure calculations: The chess library
,”
J. Chem. Theory Comput.
13
,
4684
4698
(
2017
).
148.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
, “
Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
,”
Phys. Rev. B
58
,
3641
(
1998
).
149.
A. H.
Larsen
,
M.
Vanin
,
J. J.
Mortensen
,
K. S.
Thygesen
, and
K. W.
Jacobsen
, “
Localized atomic basis set in the projector augmented wave method
,”
Phys. Rev. B
80
,
195112
(
2009
).
150.
T.
Rangel
,
D.
Caliste
,
L.
Genovese
, and
M.
Torrent
, “
A wavelet-based projector augmented-wave (PAW) method: Reaching frozen-core all-electron precision with a systematic, adaptive and localized wavelet basis set
,”
Comput. Phys. Commun.
208
,
1
8
(
2016
).
151.
B.
Aradi
,
B.
Hourahine
, and
T.
Frauenheim
, “
DFTB+, a sparse matrix-based implementation of the DFTB method
,”
J. Phys. Chem. A
111
,
5678
5684
(
2007
).
152.
See https://github.com/aradi/libsaydx for SAYDX—Structured Array Data Exchange.
155.
See https://www.docker.com for Docker, since 2013.
You do not currently have access to this content.