It is well established that extrapolating the coupled-cluster single double triple [CCSD and (T)] correlation energies using empirically motivated extrapolation exponents can accelerate the basis set convergence. Here, we consider the extrapolation of coupled-cluster expansion terms beyond the CCSD(T) level to the complete basis set (CBS) limit. We obtain reference CCSDT–CCSD(T) [T3–(T)], CCSDT(Q)–CCSDT [(Q)], and CCSDTQ–CCSDT(Q) [T4–(Q)] contributions from cc-pV{5,6}Z extrapolations for a diverse set of 16 first- and second-row systems. We use these basis-set limit results to fit extrapolation exponents in conjunction with the cc-pV{D,T}Z, cc-pV{T,Q}Z, and cc-pV{Q,5}Z basis set pairs. The optimal extrapolation exponents result in noticeable improvements in performance (relative to α = 3.0) in conjunction with the cc-pV{T,Q}Z basis set pair; however, smaller improvements are obtained for the other basis sets. These results confirm that the basis sets and basis set extrapolations used for obtaining post-CCSD(T) components in composite thermochemical theories such as Weizmann-4 and HEAT are sufficiently close to the CBS limit for attaining sub-kJ/mole accuracy. The fitted extrapolation exponents demonstrate that the T3–(T) correlation component converges more slowly to the CBS limit than the (Q) and T4 terms. A systematic investigation of the effect of diffuse functions shows that it diminishes (i) in the order T3–(T) > (Q) > T4–(Q) and (ii) with the size of the basis set. Importantly, we find that diffuse functions tend to systematically reduce the T3–(T) contribution but systematically increases the (Q) contribution. Thus, the use of the cc-pVnZ basis sets benefits from a certain degree of error cancellation between these two components.

1.
T.
Helgaker
,
W.
Klopper
,
K. L.
Bak
,
A.
Halkier
,
P.
Jørgensen
, and
J.
Olsen
, “
Highly accurate ab initio computation of thermochemical data
,” in
Quantum-Mechanical Prediction of Thermochemical Data
, Understanding Chemical Reactivity, edited by
J.
Cioslowski
(
Kluwer
,
Dordrecht
,
2001
), Vol. 22, pp.
1
30
.
2.
J. M. L.
Martin
and
S.
Parthiban
, “
W1 and W2 theory and their variants: Thermochemistry in the kJ/mol accuracy range
,” in
Quantum-mechanical Prediction of Thermochemical Data
, Understanding Chemical Reactivity, edited by
J.
Cioslowski
(
Kluwer
,
Dordrecht
,
2001
), Vol. 22, pp.
31
65
.
3.
J. M. L.
Martin
,
Annu. Rep. Comput. Chem.
1
,
31
(
2005
).
4.
T.
Helgaker
,
W.
Klopper
, and
D. P.
Tew
,
Mol. Phys.
106
,
2107
(
2008
).
5.
D.
Feller
,
K. A.
Peterson
, and
D. A.
Dixon
,
J. Chem. Phys.
129
,
204105
(
2008
).
6.
N.
DeYonker
,
T. R.
Cundari
, and
A. K.
Wilson
, in
Advances in the Theory of Atomic and Molecular Systems
, Progress in Theoretical Chemistry and Physics Vol. 19, edited by
P.
Piecuch
,
J.
Maruani
,
G.
Delgado-Barrio
, and
S.
Wilson
(
Springer Netherlands
,
Dordrecht
,
2009
), pp.
197
224
.
7.
A.
Karton
,
S.
Daon
, and
J. M. L.
Martin
,
Chem. Phys. Lett.
510
,
165
(
2011
).
8.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
810
(
2011
).
9.
K. A.
Peterson
,
D.
Feller
, and
D. A.
Dixon
,
Theor. Chem. Acc.
131
,
1079
(
2012
).
10.
A.
Karton
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
292
(
2016
).
11.
I.
Shavitt
and
R. J.
Bartlett
, in
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
, Cambridge Molecular Science Series (
Cambridge University Press
,
Cambridge
,
2009
).
12.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
13.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
14.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
15.
A.
Karton
,
J. Chem. Phys.
149
,
034102
(
2018
).
16.
A.
Karton
,
N.
Sylvetsky
, and
J. M. L.
Martin
,
J. Comput. Chem.
38
,
2063
(
2017
).
17.
N.
Sylvetsky
,
K. A.
Peterson
,
A.
Karton
, and
J. M. L.
Martin
,
J. Chem. Phys.
144
,
214101
(
2016
).
18.
D.
Feller
,
K. A.
Peterson
, and
B.
Ruscic
,
Theor. Chem. Acc.
133
,
1407
(
2014
).
19.
A.
Karton
,
S.
Parthiban
, and
J. M. L.
Martin
,
J. Phys. Chem. A
113
,
4802
(
2009
).
20.
A.
Karton
,
I.
Kaminker
, and
J. M. L.
Martin
,
J. Phys. Chem. A
113
,
7610
(
2009
).
21.
M. E.
Harding
,
J.
Vázquez
,
B.
Ruscic
,
A. K.
Wilson
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
128
,
114111
(
2008
).
22.
A.
Karton
,
P. R.
Taylor
, and
J. M. L.
Martin
,
J. Chem. Phys.
127
,
064104
(
2007
).
23.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
126
,
114105
(
2007
).
24.
A.
Karton
,
E.
Rabinovich
,
J. M. L.
Martin
, and
B.
Ruscic
,
J. Chem. Phys.
125
,
144108
(
2006
).
25.
Y. J.
Bomble
,
J.
Vázquez
,
M.
Kállay
,
C.
Michauk
,
P. G.
Szalay
,
A. G.
Császár
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
064108
(
2006
).
26.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
,
M.
Kállay
,
J.
Gauss
,
E. F.
Valeev
,
B. A.
Flowers
,
J.
Vázquez
, and
J. F.
Stanton
,
J. Chem. Phys.
121
,
11599
(
2004
).
27.
A. D.
Boese
,
M.
Oren
,
O.
Atasoylu
,
J. M. L.
Martin
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
120
,
4129
(
2004
).
28.
T. A.
Ruden
,
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Chem. Phys. Lett.
371
,
62
(
2003
).
29.
A.
Karton
,
P. R.
Schreiner
, and
J. M. L.
Martin
,
J. Comput. Chem.
37
,
49
(
2016
).
30.
R. O.
Ramabhadran
and
K.
Raghavachari
,
Acc. Chem. Res.
47
,
3596
(
2014
).
31.
R. O.
Ramabhadran
and
K.
Raghavachari
,
J. Phys. Chem. A
116
,
7531
(
2012
).
32.
S. E.
Wheeler
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
204
(
2012
).
33.
S. E.
Wheeler
,
K. N.
Houk
,
P. V. R.
Schleyer
, and
W. D.
Allen
,
J. Am. Chem. Soc.
131
,
2547
(
2009
).
34.
J. M. L.
Martin
,
AIP Conf. Proc.
2040
,
020008
(
2018
).
35.
A. J. C.
Varandas
,
Annu. Rev. Phys. Chem.
69
,
177
(
2018
).
36.
F. N. N.
Pansini
,
A. C.
Neto
, and
A. J. C.
Varandas
,
Chem. Phys. Lett.
641
,
90
(
2015
).
37.
F. N. N.
Pansini
and
A. J. C.
Varandas
,
Chem. Phys. Lett.
631-632
,
70
(
2015
).
38.
A. J. C.
Varandas
and
F. N. N.
Pansini
,
J. Chem. Phys.
141
,
224113
(
2014
).
39.
D. S.
Ranasinghe
and
E. C.
Barnes
,
J. Chem. Phys.
140
,
184116
(
2014
).
40.
D. S.
Ranasinghe
and
G. A.
Petersson
,
J. Chem. Phys.
138
,
144104
(
2013
).
41.
D.
Feller
,
J. Chem. Phys.
138
,
074103
(
2013
).
42.
A.
Karton
and
J. M. L.
Martin
,
J. Chem. Phys.
136
,
124114
(
2012
).
43.
D.
Feller
,
K. A.
Peterson
, and
J.
Grant Hill
,
J. Chem. Phys.
135
,
044102
(
2011
).
44.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
131
,
194105
(
2009
).
45.
D.
Bakowies
,
J. Chem. Phys.
127
,
164109
(
2007
).
46.
D.
Bakowies
,
J. Chem. Phys.
127
,
084105
(
2007
).
47.
D.
Feller
,
K. A.
Peterson
, and
T. D.
Crawford
,
J. Chem. Phys.
124
,
054107
(
2006
).
48.
D. W.
Schwenke
,
J. Chem. Phys.
122
,
014107
(
2005
).
49.
E. F.
Valeev
,
W. D.
Allen
,
R.
Hernandez
,
C. D.
Sherrill
, and
H. F.
Schaefer
,
J. Chem. Phys.
118
,
8594
(
2003
).
50.
D.
Feller
and
D. A.
Dixon
,
J. Chem. Phys.
115
,
3484
(
2001
).
52.
K. L.
Bak
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
W.
Klopper
,
J. Chem. Phys.
112
,
9229
(
2000
).
53.
J. M. L.
Martin
and
G.
de Oliveira
,
J. Chem. Phys.
111
,
1843
(
1999
).
54.
D. G.
Truhlar
,
Chem. Phys. Lett.
294
,
45
(
1998
).
55.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
108
,
9751
(
1998
).
56.
W.
Klopper
,
J.
Noga
,
H.
Koch
, and
T.
Helgaker
,
Theor. Chem. Acc.
97
,
164
(
1997
).
57.
W.
Kutzelnigg
and
J. D.
Morgan
III
,
J. Chem. Phys.
96
,
4484
(
1992
);
Erratum,
97
,
8821
(
1992
).
58.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
59.
R. N.
Hill
,
J. Chem. Phys.
83
,
1173
(
1985
).
60.
Á.
Ganyecz
,
M.
Kállay
, and
J.
Csontos
,
J. Chem. Theory Comput.
13
,
4193
(
2017
).
61.
MRCC, a quantum chemical program suite written by M. Kállay et al., See also http://www.mrcc.hu.
62.
Z.
Rolik
,
L.
Szegedy
,
I.
Ladjánszki
,
B.
Ladóczki
, and
M.
Kállay
,
J. Chem. Phys.
139
,
094105
(
2013
).
63.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
64.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
65.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
,
J. Mol. Struct.: THEOCHEM
388
,
339
(
1996
).
66.
T.
van Mourik
and
T. H.
Dunning
,
Int. J. Quantum Chem.
76
,
205
(
2000
).
67.
T. H.
Dunning
,
K. A.
Peterson
, and
A. K.
Wilson
,
J. Chem. Phys.
114
,
9244
(
2001
).
68.
P. R.
Spackman
,
D.
Jayatilaka
, and
A.
Karton
,
J. Chem. Phys.
145
,
104101
(
2016
).

Supplementary Material

You do not currently have access to this content.