Localized basis sets in the projector augmented wave formalism allow for computationally efficient calculations within density functional theory (DFT). However, achieving high numerical accuracy requires an extensive basis set, which also poses a fundamental problem for the interpretation of the results. We present a way to obtain a reduced basis set of atomic orbitals through the subdiagonalization of each atomic block of the Hamiltonian. The resulting local orbitals (LOs) inherit the information of the local crystal field. In the LO basis, it becomes apparent that the Hamiltonian is nearly block-diagonal, and we demonstrate that it is possible to keep only a subset of relevant LOs that provide an accurate description of the physics around the Fermi level. This reduces to some extent the redundancy of the original basis set, and at the same time, it allows one to perform post-processing of DFT calculations, ranging from the interpretation of electron transport to extracting effective tight-binding Hamiltonians, very efficiently and without sacrificing the accuracy of the results.

1.
J. C.
Cuevas
and
E.
Scheer
,
Molecular Electronics
(
World Scientific
,
2010
), https://www.worldscientific.com/doi/pdf/10.1142/7434.
2.
G.
Stefanucci
and
R.
van Leeuwen
,
Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
(
Cambridge University Press
,
2013
).
3.
F.
Evers
,
R.
Korytár
,
S.
Tewari
, and
J. M.
van Ruitenbeek
, “
Advances and challenges in single-molecule electron transport
,”
Rev. Mod. Phys.
92
,
035001
(
2020
).
4.
X.
Zhao
,
V.
Geskin
, and
R.
Stadler
, “
Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective
,”
J. Chem. Phys.
146
,
092308
(
2017
).
5.
A.
Georges
,
G.
Kotliar
,
W.
Krauth
, and
M. J.
Rozenberg
, “
Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
,”
Rev. Mod. Phys.
68
,
13
125
(
1996
).
6.
G.
Kotliar
,
S. Y.
Savrasov
,
K.
Haule
,
V. S.
Oudovenko
,
O.
Parcollet
, and
C. A.
Marianetti
, “
Electronic structure calculations with dynamical mean-field theory
,”
Rev. Mod. Phys.
78
,
865
951
(
2006
).
7.
K.
Held
, “
Electronic structure calculations using dynamical mean field theory
,”
Adv. Phys.
56
,
829
926
(
2007
).
8.
M.
Schüler
,
S.
Barthel
,
T.
Wehling
,
M.
Karolak
,
A.
Valli
, and
G.
Sangiovanni
, “
Realistic theory of electronic correlations in nanoscopic systems
,”
Eur. Phys. J. Spec. Top.
226
,
2615
2640
(
2017
).
9.
J. M.
Tomczak
,
P.
Liu
,
A.
Toschi
,
G.
Kresse
, and
K.
Held
, “
Merging GW with DMFT and non-local correlations beyond
,”
Eur. Phys. J. Spec. Top.
226
,
2565
2590
(
2017
).
10.
S. F.
Boys
, “
Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another
,”
Rev. Mod. Phys.
32
,
296
299
(
1960
).
11.
C.
Edmiston
and
K.
Ruedenberg
, “
Localized atomic and molecular orbitals
,”
Rev. Mod. Phys.
35
,
457
464
(
1963
).
12.
W.
von Niessen
, “
Density localization of atomic and molecular orbitals. I
,”
J. Chem. Phys.
56
,
4290
4297
(
1972
).
13.
J.
Pipek
and
P. G.
Mezey
, “
A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions
,”
J. Chem. Phys.
90
,
4916
4926
(
1989
).
14.
N.
Marzari
and
D.
Vanderbilt
, “
Maximally localized generalized Wannier functions for composite energy bands
,”
Phys. Rev. B
56
,
12847
12865
(
1997
).
15.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
1475
(
2012
).
16.
M.
Strange
,
I. S.
Kristensen
,
K. S.
Thygesen
, and
K. W.
Jacobsen
, “
Benchmark density functional theory calculations for nanoscale conductance
,”
J. Chem. Phys.
128
,
114714
(
2008
).
17.
K. S.
Thygesen
and
K. W.
Jacobsen
, “
Molecular transport calculations with Wannier functions
,”
Chem. Phys.
319
,
111
125
(
2005
).
18.
W. C.
Lu
,
C. Z.
Wang
,
M. W.
Schmidt
,
L.
Bytautas
,
K. M.
Ho
, and
K.
Ruedenberg
, “
Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals
,”
J. Chem. Phys.
120
,
2629
2637
(
2004
).
19.
X.
Qian
,
J.
Li
,
L.
Qi
,
C.-Z.
Wang
,
T.-L.
Chan
,
Y.-X.
Yao
,
K.-M.
Ho
, and
S.
Yip
, “
Quasiatomic orbitals for ab initio tight-binding analysis
,”
Phys. Rev. B
78
,
245112
(
2008
).
20.
X.
Qian
,
J.
Li
, and
S.
Yip
, “
Calculating phase-coherent quantum transport in nanoelectronics with ab initio quasiatomic orbital basis set
,”
Phys. Rev. B
82
,
195442
(
2010
).
21.
G.
Mil’nikov
,
N.
Mori
, and
Y.
Kamakura
, “
Equivalent transport models in atomistic quantum wires
,”
Phys. Rev. B
85
,
035317
(
2012
).
22.
F.
Ducry
,
M. H.
Bani-Hashemian
, and
M.
Luisier
, “
Hybrid mode-space–real-space approximation for first-principles quantum transport simulation of inhomogeneous devices
,”
Phys. Rev. Appl.
13
,
044067
(
2020
).
23.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
1990
).
24.
R. S.
Mulliken
, “
Electronic population analysis on lcao–mo molecular wave functions. I
,”
J. Chem. Phys.
23
,
1833
1840
(
1955
).
25.
A.
Valli
,
A.
Amaricci
,
V.
Brosco
, and
M.
Capone
, “
Quantum interference assisted spin filtering in graphene nanoflakes
,”
Nano Lett.
18
,
2158
2164
(
2018
).
26.
A.
Valli
,
A.
Amaricci
,
V.
Brosco
, and
M.
Capone
, “
Interplay between destructive quantum interference and symmetry-breaking phenomena in graphene quantum junctions
,”
Phys. Rev. B
100
,
075118
(
2019
).
27.
L.
Guo
,
Y.
Qin
,
X.
Gu
,
X.
Zhu
,
Q.
Zhou
, and
X.
Sun
, “
Spin transport in organic molecules
,”
Front. Chem.
7
,
428
(
2019
).
28.
M. S.
Zöllner
,
S.
Varela
,
E.
Medina
,
V.
Mujica
, and
C.
Herrmann
, “
Insight into the origin of chiral-induced spin selectivity from a symmetry analysis of electronic transmission
,”
J. Chem. Theory Comput.
16
,
2914
2929
(
2020
).
29.
P.-O.
Löwdin
, “
On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals
,”
J. Chem. Phys.
18
,
365
375
(
1950
).
30.
P.-O.
Löwdin
, “
A note on the quantum-mechanical perturbation theory
,”
J. Chem. Phys.
19
,
1396
1401
(
1951
).
31.
P.-O.
Löwdin
, “
Studies in perturbation theory. IV. Solution of eigenvalue problem by projection operator formalism
,”
J. Math. Phys.
3
,
969
982
(
1962
).
32.
P.-O.
Löwdin
, “
Studies in perturbation theory: II. Generalization of the Brillouin-Wigner formalism III. Solution of the Schrödinger equation under a variation of a parameter
,”
J. Mol. Spectrosc.
13
,
326
337
(
1964
).
33.
S.
Priyadarshy
,
S. S.
Skourtis
,
S. M.
Risser
, and
D. N.
Beratan
, “
Bridge-mediated electronic interactions: Differences between Hamiltonian and Green function partitioning in a non-orthogonal basis
,”
J. Chem. Phys.
104
,
9473
9481
(
1996
).
34.
V.
Mujica
,
M.
Kemp
, and
M. A.
Ratner
, “
Electron conduction in molecular wires. I. A scattering formalism
,”
J. Chem. Phys.
101
,
6849
6855
(
1994
).
35.
S.
Datta
,
Quantum Transport: Atom to Transistor
(
Cambridge University Press
,
2005
).
36.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
37.
J. J.
Mortensen
,
L. B.
Hansen
, and
K. W.
Jacobsen
, “
Real-space grid implementation of the projector augmented wave method
,”
Phys. Rev. B
71
,
035109
(
2005
).
38.
A. H.
Larsen
,
M.
Vanin
,
J. J.
Mortensen
,
K. S.
Thygesen
, and
K. W.
Jacobsen
, “
Localized atomic basis set in the projector augmented wave method
,”
Phys. Rev. B
80
,
195112
(
2009
).
39.
J.
Enkovaara
,
C.
Rostgaard
,
J. J.
Mortensen
,
J.
Chen
,
M.
Dułak
,
L.
Ferrighi
,
J.
Gavnholt
,
C.
Glinsvad
,
V.
Haikola
,
H. A.
Hansen
,
H. H.
Kristoffersen
,
M.
Kuisma
,
A. H.
Larsen
,
L.
Lehtovaara
,
M.
Ljungberg
,
O.
Lopez-Acevedo
,
P. G.
Moses
,
J.
Ojanen
,
T.
Olsen
,
V.
Petzold
,
N. A.
Romero
,
J.
Stausholm-Møller
,
M.
Strange
,
G. A.
Tritsaris
,
M.
Vanin
,
M.
Walter
,
B.
Hammer
,
H.
Häkkinen
,
G. K. H.
Madsen
,
R. M.
Nieminen
,
J. K.
Nørskov
,
M.
Puska
,
T. T.
Rantala
,
J.
Schiøtz
,
K. S.
Thygesen
, and
K. W.
Jacobsen
, “
Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method
,”
J. Phys.: Condens. Matter
22
,
253202
(
2010
).
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
41.
E. Y.
Li
and
N.
Marzari
, “
Improving the electrical conductivity of carbon nanotube networks: A first-principles study
,”
ACS Nano
5
,
9726
9736
(
2011
).
42.
L.
Martini
,
Z.
Chen
,
N.
Mishra
,
G. B.
Barin
,
P.
Fantuzzi
,
P.
Ruffieux
,
R.
Fasel
,
X.
Feng
,
A.
Narita
,
C.
Coletti
etet al, “
Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes
,”
Carbon
146
,
36
43
(
2019
).
43.

Note that in  Appendix A, we use the symbol HC for the scattering region.

44.
A. R.
Dmitry
,
Theory of Quantum Transport at Nanoscale: An Introduction
(
Springer
).
45.

Note that the range of inter-atomic interaction, i.e., m, remains constant.

46.
M.
Strange
,
C.
Rostgaard
,
H.
Häkkinen
, and
K. S.
Thygesen
, “
Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions
,”
Phys. Rev. B
83
,
115108
(
2011
).
47.
G. C.
Solomon
,
D. Q.
Andrews
,
T.
Hansen
,
R. H.
Goldsmith
,
M. R.
Wasielewski
,
R. P.
Van Duyne
, and
M. A.
Ratner
, “
Understanding quantum interference in coherent molecular conduction
,”
J. Chem. Phys.
129
,
054701
(
2008
).
48.
T.
Markussen
,
R.
Stadler
, and
K. S.
Thygesen
, “
The relation between structure and quantum interference in single molecule junctions
,”
Nano Lett.
10
,
4260
4265
(
2010
).
49.
K. G. L.
Pedersen
,
M.
Strange
,
M.
Leijnse
,
P.
Hedegard
,
G. C.
Solomon
, and
J.
Paaske
, “
Quantum interference in off-resonant transport through single molecules
,”
Phys. Rev. B
90
,
125413
(
2014
).
50.
D.
Nozaki
and
C.
Toher
, “
Is the antiresonance in meta-contacted benzene due to the destructive superposition of waves traveling two different routes around the benzene ring?
,”
J. Phys. Chem. C
121
,
11739
11746
(
2017
).
51.

Note that the p+d model, in this case, includes a 3s and a sp3-like orbital for each external carbon atom, as discussed in  Appendix C, but we do not change the nomenclature for the sake of simplicity.

52.
R.
Stadler
,
M.
Forshaw
, and
C.
Joachim
, “
Modulation of electron transmission for molecular data storage
,”
Nanotechnology
14
,
138
142
(
2003
).
53.
R.
Stadler
,
S.
Ami
,
C.
Joachim
, and
M.
Forshaw
, “
Integrating logic functions inside a single molecule
,”
Nanotechnology
15
,
S115
S121
(
2004
).
54.
R.
Stadler
and
T.
Markussen
, “
Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications
,”
J. Chem. Phys.
135
,
154109
(
2011
).
55.
M.
Soriano
and
J. J.
Palacios
, “
Theory of projections with nonorthogonal basis sets: Partitioning techniques and effective Hamiltonians
,”
Phys. Rev. B
90
,
075128
(
2014
).
56.
D.
Jacob
, “
Towards a full ab-initio theory of strong electronic correlations in nanoscale devices
,”
J. Phys.: Condens. Matter
27
,
245606
(
2015
).
57.
A.
Rahman
,
J.
Guo
,
S.
Datta
, and
M. S.
Lundstrom
, “
Theory of ballistic nanotransistors
,”
IEEE Trans. Electron Devices
50
,
1853
1864
(
2003
).
58.
D.
Jacob
and
J. J.
Palacios
, “
Critical comparison of electrode models in density functional theory based quantum transport calculations
,”
J. Chem. Phys.
134
,
044118
(
2011
).
59.
G.
Calogero
,
N.
Papior
,
M.
Koleini
,
M. H. L.
Larsen
, and
M.
Brandbyge
, “
Multi-scale approach to first-principles electron transport beyond 100 nm
,”
Nanoscale
11
,
6153
6164
(
2019
).
60.
M.
Potthoff
and
W.
Nolting
, “
Metallic surface of a Mott insulator–Mott insulating surface of a metal
,”
Phys. Rev. B
60
,
7834
7849
(
1999
).
61.
M.
Snoek
,
I.
Titvinidze
,
C.
Tőke
,
K.
Byczuk
, and
W.
Hofstetter
, “
Antiferromagnetic order of strongly interacting fermions in a trap: Real-space dynamical mean-field analysis
,”
New J. Phys.
10
,
093008
(
2008
).
62.
A.
Amaricci
,
A.
Privitera
, and
M.
Capone
, “
Inhomogeneous BCS-BEC crossover for trapped cold atoms in optical lattices
,”
Phys. Rev. A
89
,
053604
(
2014
).
63.
K.
Baumann
,
A.
Valli
,
A.
Amaricci
, and
M.
Capone
, “
Inducing and controlling magnetism in the honeycomb lattice through a harmonic trapping potential
,”
Phys. Rev. A
101
,
033611
(
2020
).
64.
A.
Valli
,
G.
Sangiovanni
,
O.
Gunnarsson
,
A.
Toschi
, and
K.
Held
, “
Dynamical vertex approximation for nanoscopic systems
,”
Phys. Rev. Lett.
104
,
246402
(
2010
).
65.
D.
Jacob
,
K.
Haule
, and
G.
Kotliar
, “
Dynamical mean-field theory for molecular electronics: Electronic structure and transport properties
,”
Phys. Rev. B
82
,
195115
(
2010
).
66.
A.
Valli
,
G.
Sangiovanni
,
A.
Toschi
, and
K.
Held
, “
Correlation effects in transport properties of interacting nanostructures
,”
Phys. Rev. B
86
,
115418
(
2012
).
67.
H.
Das
,
G.
Sangiovanni
,
A.
Valli
,
K.
Held
, and
T.
Saha-Dasgupta
, “
Size control of charge-orbital order in half-doped manganite La0.5Ca0.5Mno3
,”
Phys. Rev. Lett.
107
,
197202
(
2011
).
68.
A.
Valli
,
T.
Schäfer
,
P.
Thunström
,
G.
Rohringer
,
S.
Andergassen
,
G.
Sangiovanni
,
K.
Held
, and
A.
Toschi
, “
Dynamical vertex approximation in its parquet implementation: Application to Hubbard nanorings
,”
Phys. Rev. B
91
,
115115
(
2015
).
69.
A.
Valli
,
H.
Das
,
G.
Sangiovanni
,
T.
Saha-Dasgupta
, and
K.
Held
, “
Tunable site- and orbital-selective Mott transition and quantum confinement effects in La0.5Ca0.5Mno3 nanoclusters
,”
Phys. Rev. B
92
,
115143
(
2015
).
70.
A.
Valli
,
A.
Amaricci
,
A.
Toschi
,
T.
Saha-Dasgupta
,
K.
Held
, and
M.
Capone
, “
Effective magnetic correlations in hole-doped graphene nanoflakes
,”
Phys. Rev. B
94
,
245146
(
2016
).
71.
P.
Pudleiner
,
P.
Thunström
,
A.
Valli
,
A.
Kauch
,
G.
Li
, and
K.
Held
, “
Parquet approximation for molecules: Spectrum and optical conductivity of the Pariser-Parr-Pople model
,”
Phys. Rev. B
99
,
125111
(
2019
).
72.
C. M.
Kropf
,
A.
Valli
,
P.
Franceschini
,
G. L.
Celardo
,
M.
Capone
,
C.
Giannetti
, and
F.
Borgonovi
, “
Towards high-temperature coherence-enhanced transport in heterostructures of a few atomic layers
,”
Phys. Rev. B
100
,
035126
(
2019
).
73.
J.-H.
Sim
and
M. J.
Han
, “
Density functional theory plus dynamical mean-field theory with natural atomic orbital projectors
,”
Phys. Rev. B
100
,
115151
(
2019
).
74.

For details, see, e.g., the book of Datta, Chap. 8.4, Eq. (8.4.7).35 

75.
D. D.
O’Regan
, “
Subspace representations in ab initio methods for strongly correlated systems
,” in
Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems
(
Springer
,
2012
), pp.
89
123
.
76.
K. S.
Thygesen
, “
Electron transport through an interacting region: The case of a nonorthogonal basis set
,”
Phys. Rev. B
73
,
035309
(
2006
).
77.
Y. H.
Kwok
,
H.
Xie
,
C. Y.
Yam
,
X.
Zheng
, and
G. H.
Chen
, “
Time-dependent density functional theory quantum transport simulation in non-orthogonal basis
,”
J. Chem. Phys.
139
,
224111
(
2013
).
78.
A.
Droghetti
and
I.
Rungger
, “
Quantum transport simulation scheme including strong correlations and its application to organic radicals adsorbed on gold
,”
Phys. Rev. B
95
,
085131
(
2017
).
79.

The LOs are not exactly degenerate due to the different local chemical environments of the carbon atoms.

You do not currently have access to this content.