Coarse graining enables the investigation of molecular dynamics for larger systems and at longer timescales than is possible at an atomic resolution. However, a coarse graining model must be formulated such that the conclusions we draw from it are consistent with the conclusions we would draw from a model at a finer level of detail. It has been proved that a force matching scheme defines a thermodynamically consistent coarse-grained model for an atomistic system in the variational limit. Wang et al. [ACS Cent. Sci. 5, 755 (2019)] demonstrated that the existence of such a variational limit enables the use of a supervised machine learning framework to generate a coarse-grained force field, which can then be used for simulation in the coarse-grained space. Their framework, however, requires the manual input of molecular features to machine learn the force field. In the present contribution, we build upon the advance of Wang et al. and introduce a hybrid architecture for the machine learning of coarse-grained force fields that learn their own features via a subnetwork that leverages continuous filter convolutions on a graph neural network architecture. We demonstrate that this framework succeeds at reproducing the thermodynamics for small biomolecular systems. Since the learned molecular representations are inherently transferable, the architecture presented here sets the stage for the development of machine-learned, coarse-grained force fields that are transferable across molecular systems.

1.
M.
Shirts
and
V. S.
Pande
, “
Screen savers of the world unite!
,”
Science
290
,
1903
1904
(
2000
).
2.
F.
Allen
,
G.
Almasi
,
W.
Andreoni
,
D.
Beece
,
B. J.
Berne
,
A.
Bright
,
J.
Brunheroto
,
C.
Cascaval
,
J.
Castanos
,
P.
Coteus
,
P.
Crumley
,
A.
Curioni
,
M.
Denneau
,
W.
Donath
,
M.
Eleftheriou
,
B.
Flitch
,
B.
Fleischer
,
C. J.
Georgiou
,
R.
Germain
,
M.
Giampapa
,
D.
Gresh
,
M.
Gupta
,
R.
Haring
,
H.
Ho
,
P.
Hochschild
,
S.
Hummel
,
T.
Jonas
,
D.
Lieber
,
G.
Martyna
,
K.
Maturu
,
J.
Moreira
,
D.
Newns
,
M.
Newton
,
R.
Philhower
,
T.
Picunko
,
J.
Pitera
,
M.
Pitman
,
R.
Rand
,
A.
Royyuru
,
V.
Salapura
,
A.
Sanomiya
,
R.
Shah
,
Y.
Sham
,
S.
Singh
,
M.
Snir
,
F.
Suits
,
R.
Swetz
,
W. C.
Swope
,
N.
Vishnumurthy
,
T. J. C.
Ward
,
H.
Warren
, and
R.
Zhou
, “
Blue gene: A vision for protein science using a petaflop supercomputer
,”
IBM Syst. J.
40
,
310
327
(
2001
).
3.
I.
Buch
,
M. J.
Harvey
,
T.
Giorgino
,
D. P.
Anderson
, and
G.
De Fabritiis
, “
High-throughput all-atom molecular dynamics simulations using distributed computing
,”
J. Chem. Inf. Model.
50
,
397
403
(
2010
).
4.
D. E.
Shaw
,
M. M.
Deneroff
,
R. O.
Dror
,
J. S.
Kuskin
,
R. H.
Larson
,
J. K.
Salmon
,
C.
Young
,
B.
Batson
,
K. J.
Bowers
,
J. C.
Chao
,
M. P.
Eastwood
,
J.
Gagliardo
,
J. P.
Grossman
,
C. R.
Ho
,
D. J.
Ierardi
,
I.
Kolossváry
,
J. L.
Klepeis
,
T.
Layman
,
C.
McLeavey
,
M. A.
Moraes
,
R.
Mueller
,
E. C.
Priest
,
Y.
Shan
,
J.
Spengler
,
M.
Theobald
,
B.
Towles
, and
S. C.
Wang
, “
Anton, a special-purpose machine for molecular dynamics simulation
,”
Commun. ACM
51
,
91
97
(
2008
).
5.
T. J.
Lane
,
D.
Shukla
,
K. A.
Beauchamp
, and
V. S.
Pande
, “
To milliseconds and beyond: Challenges in the simulation of protein folding
,”
Curr. Opin. Struct. Biol.
23
,
58
65
(
2013
).
6.
N.
Plattner
,
S.
Doerr
,
G.
De Fabritiis
, and
F.
Noé
, “
Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling
,”
Nat. Chem.
9
,
1005
(
2017
).
7.
S.
Kmiecik
,
D.
Gront
,
M.
Kolinski
,
L.
Wieteska
,
A. E.
Dawid
, and
A.
Kolinski
, “
Coarse-grained protein models and their applications
,”
Chem. Rev.
116
,
7898
7936
(
2016
).
8.
C.
Clementi
,
H.
Nymeyer
, and
J. N.
Onuchic
, “
Topological and energetic factors: What determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins
,”
J. Mol. Biol.
298
,
937
953
(
2000
).
9.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
De Vries
, “
The MARTINI force field: Coarse grained model for biomolecular simulations
,”
J. Phys. Chem. B
111
,
7812
7824
(
2007
).
10.
L.
Monticelli
,
S. K.
Kandasamy
,
X.
Periole
,
R. G.
Larson
,
D. P.
Tieleman
, and
S.-J.
Marrink
, “
The MARTINI coarse-grained force field: Extension to proteins
,”
J. Chem. Theory Comput.
4
,
819
834
(
2008
).
11.
A.
Kolinski
 et al., “
Protein modeling and structure prediction with a reduced representation
,”
Acta Biochim. Pol.
51
,
349
371
(
2004
).
12.
A.
Davtyan
,
N. P.
Schafer
,
W.
Zheng
,
C.
Clementi
,
P. G.
Wolynes
, and
G. A.
Papoian
, “
AWSEM-MD: Protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing
,”
J. Phys. Chem. B
116
,
8494
8503
(
2012
).
13.
R.
Das
and
D.
Baker
, “
Macromolecular modeling with rosetta
,”
Annu. Rev. Biochem.
77
,
363
382
(
2008
).
14.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
15.
R.
Gómez-Bombarelli
and
A.
Aspuru-Guzik
, “
Machine learning and big-data in computational chemistry
,” in
Handbook of Materials Modeling: Methods: Theory and Modeling
(
Springer, Cham
,
2020
), pp.
1939
1962
.
16.
T. N.
Kipf
and
M.
Welling
, “
Semi-supervised classification with graph convolutional networks
,” in
5th International Conference on Learning Representations
,
Toulon, France
,
April 24–26, 2017
.
17.
P. W.
Battaglia
,
J. B.
Hamrick
,
V.
Bapst
,
A.
Sanchez-Gonzalez
,
V.
Zambaldi
,
M.
Malinowski
,
A.
Tacchetti
,
D.
Raposo
,
A.
Santoro
,
R.
Faulkner
 et al., “
Relational inductive biases, deep learning, and graph networks
,” arXiv:1806.01261 (
2018
).
18.
D. K.
Duvenaud
,
D.
Maclaurin
,
J.
Iparraguirre
,
R.
Bombarell
,
T.
Hirzel
,
A.
Aspuru-Guzik
, and
R. P.
Adams
, “
Convolutional networks on graphs for learning molecular fingerprints
,” in
Advances in Neural Information Processing Systems 28
, edited by
C.
Cortes
,
N. D.
Lawrence
,
D. D.
Lee
,
M.
Sugiyama
, and
R.
Garnett
(
Curran Associates, Inc.
,
2015
), pp.
2224
2232
.
19.
S.
Kearnes
,
K.
McCloskey
,
M.
Berndl
,
V.
Pande
, and
P.
Riley
, “
Molecular graph convolutions: Moving beyond fingerprints
,”
J. Comput.-Aided Mol. Des.
30
,
595
608
(
2016
).
20.
J.
Gilmer
,
S. S.
Schoenholz
,
P. F.
Riley
,
O.
Vinyals
, and
G. E.
Dahl
, “
Neural message passing for quantum chemistry
,” in
Proceedings of the 34th International Conference on Machine Learning
(
JMLR.org
,
2017
), Vol. 70, pp.
1263
1272
.
21.
E. N.
Feinberg
,
D.
Sur
,
Z.
Wu
,
B. E.
Husic
,
H.
Mai
,
Y.
Li
,
S.
Sun
,
J.
Yang
,
B.
Ramsundar
, and
V. S.
Pande
, “
Potential net for molecular property prediction
,”
ACS Cent. Sci.
4
,
1520
1530
(
2018
).
22.
T.
Xie
and
J. C.
Grossman
, “
Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
,”
Phys. Rev. Lett.
120
,
145301
(
2018
).
23.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K. R.
Müller
, and
A.
Tkatchenko
, “
Quantum-chemical insights from deep tensor neural networks
,”
Nat. Commun.
8
,
13890
(
2017
).
24.
K.
Schütt
,
P.-J.
Kindermans
,
H. E.
Sauceda Felix
,
S.
Chmiela
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
,” in
Advances in Neural Information Processing Systems 30
, edited by
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
(
Curran Associates, Inc.
,
2017
), pp.
991
1001
.
25.
J.
Ruza
,
W.
Wang
,
D.
Schwalbe-Koda
,
S.
Axelrod
,
W. H.
Harris
, and
R.
Gomez-Bombarelli
, “
Temperature-transferable coarse-graining of ionic liquids with dual graph convolutional neural networks
,” arXiv:2007.14144 (
2020
).
26.
W. G.
Noid
, “
Perspective: Coarse-grained models for biomolecular systems
,”
J. Chem. Phys.
139
,
090901
(
2013
).
27.
L.
Boninsegna
,
R.
Banisch
, and
C.
Clementi
, “
A data-driven perspective on the hierarchical assembly of molecular structures
,”
J. Chem. Theory Comput.
14
,
453
460
(
2018
).
28.
W.
Wang
and
R.
Gómez-Bombarelli
, “
Coarse-graining auto-encoders for molecular dynamics
,”
npj Comput. Mater.
5
,
125
(
2019
).
29.
S. T.
John
and
G.
Csányi
, “
Many-body coarse-grained interactions using Gaussian approximation potentials
,”
J. Phys. Chem. B
121
,
10934
10949
(
2017
).
30.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
E.
Weinan
, “
DeePCG: Constructing coarse-grained models via deep neural networks
,”
J. Chem. Phys.
149
,
034101
(
2018
).
31.
J.
Wang
,
S.
Olsson
,
C.
Wehmeyer
,
A.
Pérez
,
N. E.
Charron
,
G.
De Fabritiis
,
F.
Noé
, and
C.
Clementi
, “
Machine learning of coarse-grained molecular dynamics force fields
,”
ACS Cent. Sci.
5
,
755
767
(
2019
).
32.
J.
Wang
,
S.
Chmiela
,
K.-R.
Müller
,
F.
Noé
, and
C.
Clementi
, “
Ensemble learning of coarse-grained molecular dynamics force fields with a kernel approach
,”
J. Chem. Phys.
152
,
194106
(
2020
).
33.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet—A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
34.
S.
Honda
,
T.
Akiba
,
Y. S.
Kato
,
Y.
Sawada
,
M.
Sekijima
,
M.
Ishimura
,
A.
Ooishi
,
H.
Watanabe
,
T.
Odahara
, and
K.
Harata
, “
Crystal structure of a ten-amino acid protein
,”
J. Am. Chem. Soc.
130
,
15327
15331
(
2008
).
35.
F.
Ercolessi
and
J. B.
Adams
, “
Interatomic potentials from first-principles calculations: The force-matching method
,”
Europhys. Lett.
26
,
583
(
1994
).
36.
S.
Izvekov
and
G. A.
Voth
, “
A multiscale coarse-graining method for biomolecular systems
,”
J. Phys. Chem. B
109
,
2469
2473
(
2005
).
37.
S.
Izvekov
,
M.
Parrinello
,
C. J.
Burnham
, and
G. A.
Voth
, “
Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching
,”
J. Chem. Phys.
120
,
10896
10913
(
2004
).
38.
M. G.
Guenza
,
M.
Dinpajooh
,
J.
McCarty
, and
I. Y.
Lyubimov
, “
Accuracy, transferability, and efficiency of coarse-grained models of molecular liquids
,”
J. Phys. Chem. B
122
,
10257
10278
(
2018
).
39.
S.
Izvekov
and
G. A.
Voth
, “
Multiscale coarse graining of liquid-state systems
,”
J. Chem. Phys.
123
,
134105
(
2005
).
40.
G.
Ciccotti
,
T.
Lelièvre
, and
E.
Vanden-Eijnden
, “
Projection of diffusions on submanifolds: Application to mean force computation
,”
Commun. Pure Appl. Math.
61
,
371
408
(
2008
).
41.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
, “
The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models
,”
J. Chem. Phys.
128
,
244114
(
2008
).
42.
M. S.
Shell
, “
The relative entropy is fundamental to multiscale and inverse thermodynamic problems
,”
J. Chem. Phys.
129
,
144108
(
2008
).
43.
J. F.
Rudzinski
and
W. G.
Noid
, “
Coarse-graining entropy, forces, and structures
,”
J. Chem. Phys.
135
,
214101
(
2011
).
44.
103 
45.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
46.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
47.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
Von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
48.
A. P.
Bartók
,
M. J.
Gillan
,
F. R.
Manby
, and
G.
Csányi
, “
Machine-learning approach for one-and two-body corrections to density functional theory: Applications to molecular and condensed water
,”
Phys. Rev. B
88
,
054104
(
2013
).
49.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
50.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
51.
A. P.
Bartók
,
S.
De
,
C.
Poelking
,
N.
Bernstein
,
J. R.
Kermode
,
G.
Csányi
, and
M.
Ceriotti
, “
Machine learning unifies the modeling of materials and molecules
,”
Sci. Adv.
3
,
e1701816
(
2017
).
52.
J. S.
Smith
,
B.
Nebgen
,
N.
Lubbers
,
O.
Isayev
, and
A. E.
Roitberg
, “
Less is more: Sampling chemical space with active learning
,”
J. Chem. Phys.
148
,
241733
(
2018
).
53.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
, “
Symmetry-adapted machine learning for tensorial properties of atomistic systems
,”
Phys. Rev. Lett.
120
,
036002
(
2018
).
54.
G.
Imbalzano
,
A.
Anelli
,
D.
Giofré
,
S.
Klees
,
J.
Behler
, and
M.
Ceriotti
, “
Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials
,”
J. Chem. Phys.
148
,
241730
(
2018
).
55.
T. T.
Nguyen
,
E.
Székely
,
G.
Imbalzano
,
J.
Behler
,
G.
Csányi
,
M.
Ceriotti
,
A. W.
Götz
, and
F.
Paesani
, “
Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions
,”
J. Chem. Phys.
148
,
241725
(
2018
).
56.
L.
Zhang
,
J.
Han
,
H.
Wang
,
W.
Saidi
,
R.
Car
, and W. E, “
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems
,” in
Advances in Neural Information Processing Systems 31
, edited by
S.
Bengio
,
H.
Wallach
,
H.
Larochelle
,
K.
Grauman
,
N.
Cesa-Bianchi
, and
R.
Garnett
(
Curran Associates, Inc.
,
2018
), pp.
4436
4446
.
57.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
E.
Weinan
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
58.
T.
Bereau
,
R. A.
DiStasio
, Jr.
,
A.
Tkatchenko
, and
O. A.
Von Lilienfeld
, “
Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning
,”
J. Chem. Phys.
148
,
241706
(
2018
).
59.
H.
Wang
and
W.
Yang
, “
Toward building protein force fields by residue-based systematic molecular fragmentation and neural network
,”
J. Chem. Theory Phys.
15
,
1409
1417
(
2018
).
60.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Advances in Neural Information Processing Systems 32
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
dAlché Buc
,
E.
Fox
, and
R.
Garnett
(
Curran Associates, Inc.
,
2019
), pp.
8024
8035
.
61.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Deep residual learning for image recognition
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2016
), pp.
770
778
.
62.
T.
Schneider
and
E.
Stoll
, “
Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions
,”
Phys. Rev. B
17
,
1302
(
1978
).
63.
J.
Fass
,
D. A.
Sivak
,
G. E.
Crooks
,
K. A.
Beauchamp
,
B.
Leimkuhler
, and
J. D.
Chodera
, “
Quantifying configuration-sampling error in Langevin simulations of complex molecular systems
,”
Entropy
20
,
318
(
2018
).
64.
B.
Leimkuhler
and
C.
Matthews
, “
Rational construction of stochastic numerical methods for molecular sampling
,”
Appl. Math. Res. Express
2013
,
34
56
.
65.

As in Ref. 32, we require the β-carbon in order to break the symmetry of the system (i.e., to enforce chirality). In their demonstration of CGnet, Wang et al.31 used only the five backbone heavy atoms as beads because chirality is enforced through dihedral features, which we do not use here.

66.
S.
Kullback
and
R. A.
Leibler
, “
On information and sufficiency
,”
Ann. Math. Stat.
22
,
79
86
(
1951
).
67.

We could alternatively compute the mean squared error between discrete distributions of counts without omitting any bins.

68.

Similar results were obtained for the two-dimensional Wasserstein distance.

69.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
, “
How fast-folding proteins fold
,”
Science
334
,
517
520
(
2011
).
70.
K. A.
Beauchamp
,
R.
McGibbon
,
Y.-S.
Lin
, and
V. S.
Pande
, “
Simple few-state models reveal hidden complexity in protein folding
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
17807
17813
(
2012
).
71.
B. E.
Husic
,
R. T.
McGibbon
,
M. M.
Sultan
, and
V. S.
Pande
, “
Optimized parameter selection reveals trends in Markov state models for protein folding
,”
J. Chem. Phys.
145
,
194103
(
2016
).
72.
K. A.
McKiernan
,
B. E.
Husic
, and
V. S.
Pande
, “
Modeling the mechanism of CLN025 beta-hairpin formation
,”
J. Chem. Phys.
147
,
104107
(
2017
).
73.
M. M.
Sultan
and
V. S.
Pande
, “
Automated design of collective variables using supervised machine learning
,”
J. Chem. Phys.
149
,
094106
(
2018
).
74.
M. K.
Scherer
,
B. E.
Husic
,
M.
Hoffmann
,
F.
Paul
,
H.
Wu
, and
F.
Noé
, “
Variational selection of features for molecular kinetics
,”
J. Chem. Phys.
150
,
194108
(
2019
).
75.
R.
Zwanzig
, “
From classical dynamics to continuous time random walks
,”
J. Stat. Phys.
30
,
255
262
(
1983
).
76.
C.
Schütte
,
A.
Fischer
,
W.
Huisinga
, and
P.
Deuflhard
, “
A direct approach to conformational dynamics based on hybrid Monte Carlo
,”
J. Comput. Phys.
151
,
146
168
(
1999
).
77.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
, “
Describing protein folding kinetics by molecular dynamics simulations. 1. Theory
,”
J. Phys. Chem. B
108
,
6571
6581
(
2004
).
78.
N.
Singhal
,
C. D.
Snow
, and
V. S.
Pande
, “
Using path sampling to build better markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin
,”
J. Chem. Phys.
121
,
415
425
(
2004
).
79.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. C.
Swope
, “
Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics
,”
J. Chem. Phys.
126
,
155101
(
2007
).
80.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
, “
Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states
,”
J. Chem. Phys.
126
,
155102
(
2007
).
81.
N.-V.
Buchete
and
G.
Hummer
, “
Coarse master equations for peptide folding dynamics
,”
J. Phys. Chem. B
112
,
6057
6069
(
2008
).
82.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
, “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
,
174105
(
2011
).
83.
B. E.
Husic
and
V. S.
Pande
, “
Markov state models: From an art to a science
,”
J. Am. Chem. Soc.
140
,
2386
2396
(
2018
).
84.
F.
Noé
, “
Machine learning for molecular dynamics on long timescales
,” in
Machine Learning Meets Quantum Physics
(
Springer
,
Cambridge
,
2020
), pp.
331
372
.
85.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
, “
Identification of slow molecular order parameters for Markov model construction
,”
J. Chem. Phys.
139
,
015102
(
2013
).
86.
C. R.
Schwantes
and
V. S.
Pande
, “
Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9
,”
J. Chem. Theory Comput.
9
,
2000
2009
(
2013
).
87.
F.
Nüske
,
L.
Boninsegna
, and
C.
Clementi
, “
Coarse-graining molecular systems by spectral matching
,”
J. Chem. Phys.
151
,
044116
(
2019
).
88.
I.
Lyubimov
and
M.
Guenza
, “
First-principle approach to rescale the dynamics of simulated coarse-grained macromolecular liquids
,”
Phys. Rev. E
84
,
031801
(
2011
).
89.
H.
Gouk
,
E.
Frank
,
B.
Pfahringer
, and
M.
Cree
, “
Regularisation of neural networks by enforcing Lipschitz continuity
,” arXiv:1804.04368 (
2018
).
90.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
91.
E.
Jones
,
T.
Oliphant
,
P.
Peterson
 et al., SciPy: Open source scientific tools for Python,
2001
.
92.
W.
McKinney
 et al., “
Data structures for statistical computing in python
,” in
Proceedings of the 9th Python in Science Conference
(
Austin
,
TX
,
2010
), Vol. 445, pp.
51
56
.
93.
R. T.
McGibbon
,
K. A.
Beauchamp
,
M. P.
Harrigan
,
C.
Klein
,
J. M.
Swails
,
C. X.
Hernández
,
C. R.
Schwantes
,
L.-P.
Wang
,
T. J.
Lane
, and
V. S.
Pande
, “
MDTraj: A modern open library for the analysis of molecular dynamics trajectories
,”
Biophys. J.
109
,
1528
1532
(
2015
).
94.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
95.
T.
Kluyver
,
B.
Ragan-Kelley
,
F.
Pérez
,
B.
Granger
,
M.
Bussonnier
,
J.
Frederic
,
K.
Kelley
,
J.
Hamrick
,
J.
Grout
,
S.
Corlay
,
P.
Ivanov
,
D.
Avila
,
S.
Abdalla
, and
C.
Willing
, “
Jupyter notebooks—A publishing format for reproducible computational workflows
,” in
Positioning and Power in Academic Publishing: Players, Agents and Agendas
, edited by
F.
Loizides
and
B.
Schmidt
(
IOS Press
,
2016
), pp.
87
90
.
96.
J. D.
Hunter
, “
Matplotlib: A 2D graphics environment
,”
Comput. Sci. Eng.
9
,
90
95
(
2007
).
97.
K. T.
Schütt
,
P.
Kessel
,
M.
Gastegger
,
K. A.
Nicoli
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNetPack: A deep learning toolbox for atomistic systems
,”
J. Chem. Theory Comput.
15
,
448
455
(
2018
).
98.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
et al., “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
99.
M.
Waskom
,
O.
Botvinnik
,
D.
O’Kane
,
P.
Hobson
,
S.
Lukauskas
,
D. C.
Gemperline
,
T.
Augspurger
,
Y.
Halchenko
,
J. B.
Cole
,
J.
Warmenhoven
,
J.
de Ruiter
,
C.
Pye
,
S.
Hoyer
,
J.
Vanderplas
,
S.
Villalba
,
G.
Kunter
,
E.
Quintero
,
P.
Bachant
,
M.
Martin
,
K.
Meyer
,
A.
Miles
,
Y.
Ram
,
T.
Yarkoni
,
M. L.
Williams
,
C.
Evans
,
C.
Fitzgerald
,
Brian
,
C.
Fonnesbeck
,
A.
Lee
, and
A.
Qalieh
, Mwaskom/Seaborn: V0.8.1 (September, 2017),
2017
.
100.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD—Visual molecular dynamics
,”
J. Mol. Graph.
14
,
33
38
(
1996
).
101.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
, “
PyEMMA 2: A software package for estimation, validation, and analysis of Markov models
,”
J. Chem. Theory Comput.
11
,
5525
5542
(
2015
).
102.
C.
Wehmeyer
,
M. K.
Scherer
,
T.
Hempel
,
B. E.
Husic
,
S.
Olsson
, and
F.
Noé
, “
Introduction to Markov state modeling with the PyEMMA software—v1. 0
,”
LiveCoMS
1
,
5965
(
2018
).
103.
W. G.
Noid
,
P.
Liu
,
Y.
Wang
,
J.-W.
Chu
,
G. S.
Ayton
,
S.
Izvekov
,
H. C.
Andersen
, and
G. A.
Voth
, “
The multi-scale coarse-graining method. II. Numerical implementation for coarse-grained molecular models
,”
J. Chem. Phys.
128
,
244115
(
2008
).

Supplementary Material

You do not currently have access to this content.