Subsystem time-dependent density-functional theory (sTDDFT) making use of approximate non-additive kinetic energy (NAKE) functionals is known to be capable of describing excitation energy transfer processes in a variety of applications. Here, we show that sTDDFT, especially when combined with projection-based embedding (PbE), can be employed for the entire range of photo-induced electronic couplings essential for modeling photophysical properties of complex chemical and biological systems and therefore represents a complete toolbox for this class of problems. This means that it is capable of capturing the interaction/coupling associated with local- and charge-transfer (CT) excitons. However, this requires the choice of a reasonable diabatic basis. We therefore propose different diabatization strategies of the virtual orbital space in PbE-sTDDFT and show how CT excitations can be included in sTDDFT using NAKE functionals via a phenomenological approach. Finally, these electronic couplings are compared to couplings from a multistate fragment excitation difference (FED)–fragment charge difference (FCD) diabatization procedure. We show that both procedures, multistate FED–FCD and sTDDFT (with the right diabatization procedure chosen), lead to an overall good agreement for the electronic couplings, despite differences in their general diabatization strategy. We conclude that the entire range of photo-induced electronic couplings can be obtained using sTDDFT (with the right diabatization procedure chosen) in a black-box manner.

1.
C.
König
and
J.
Neugebauer
,
ChemPhysChem
13
,
386
(
2012
).
2.
N. S.
Sariciftci
,
L.
Smilowitz
,
A. J.
Heeger
, and
F.
Wudl
,
Science
258
,
1474
(
1992
).
3.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
Blackwell Science
,
Oxford
,
2002
).
4.
M. R.
Wasielewski
,
Chem. Rev.
92
,
435
(
1992
).
5.
6.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
7.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
8.
G.
Senatore
and
K. R.
Subbaswamy
,
Phys. Rev. B
34
,
5754
(
1986
).
9.
M. D.
Johnson
,
K. R.
Subbaswamy
, and
G.
Senatore
,
Phys. Rev. B
36
,
9202
(
1987
).
10.
11.
T. A.
Wesolowski
,
J. Am. Chem. Soc.
126
,
11444
(
2004
).
12.
M. E.
Casida
and
T. A.
Wesołowski
,
Int. J. Quantum Chem.
96
,
577
(
2004
).
13.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
14.
15.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
).
16.
J.
Neugebauer
,
J. Phys. Chem. B
112
,
2207
(
2008
).
17.
C.
König
,
N.
Schlüter
, and
J.
Neugebauer
,
J. Chem. Phys.
138
,
034104
(
2013
).
18.
C.
König
and
J.
Neugebauer
,
J. Chem. Theory Comput.
9
,
1808
(
2013
).
19.
J.
Tölle
,
M.
Böckers
,
N.
Niemeyer
, and
J.
Neugebauer
,
J. Chem. Phys.
151
,
174109
(
2019
).
20.
F. R.
Manby
,
M.
Stella
,
J. D.
Goodpaster
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
8
,
2564
(
2012
).
21.
J.
Tölle
,
M.
Böckers
, and
J.
Neugebauer
,
J. Chem. Phys.
150
,
181101
(
2019
).
22.
S.
Difley
and
T.
Van Voorhis
,
J. Chem. Theory Comput.
7
,
594
(
2011
).
23.
W.
Liu
,
B.
Lunkenheimer
,
V.
Settels
,
B.
Engels
,
R. F.
Fink
, and
A.
Köhn
,
J. Chem. Phys.
143
,
084106
(
2015
).
24.
X.
Li
,
R. M.
Parrish
,
F.
Liu
,
S. I. L.
Kokkila Schumacher
, and
T. J.
Martínez
,
J. Chem. Theory Comput.
13
,
3493
(
2017
).
25.
M.
Nottoli
,
S.
Jurinovich
,
L.
Cupellini
,
A. T.
Gardiner
,
R.
Cogdell
, and
B.
Mennucci
,
Photosynth. Res.
137
,
215
(
2018
).
26.
T.
Van Voorhis
,
T.
Kowalczyk
,
B.
Kaduk
,
L.-P.
Wang
,
C.-L.
Cheng
, and
Q.
Wu
,
Annu. Rev. Phys. Chem.
61
,
149
(
2010
).
27.
T.
Pacher
,
L.
Cederbaum
, and
H.
Köppel
,
Adv. Chem. Phys.
84
,
293
(
1993
).
28.
M.
Pavanello
and
J.
Neugebauer
,
J. Chem. Phys.
135
,
134113
(
2011
).
29.
J.
Neugebauer
,
C.
Curutchet
,
A.
Muñoz-Losa
, and
B.
Mennucci
,
J. Chem. Theory Comput.
6
,
1843
(
2010
).
30.
C.
Curutchet
,
A.
Muñoz-Losa
,
S.
Monti
,
J.
Kongsted
,
G. D.
Scholes
, and
B.
Mennucci
,
J. Chem. Theory Comput.
5
,
1838
(
2009
).
31.
A. A.
Voityuk
and
N.
Rösch
,
J. Chem. Phys.
117
,
5607
(
2002
).
32.
C.-H.
Yang
and
C.-P.
Hsu
,
J. Chem. Phys.
139
,
154104
(
2013
).
33.
A.
Goez
and
J.
Neugebauer
, “
Embedding methods in quantum chemistry
,” in
Frontiers of Quantum Chemistry
, edited by
M.
Wojcik
,
H.
Nakatsuji
,
B.
Kirtman
, and
Y.
Ozaki
(
Springer
,
Tokyo
,
2017
), pp.
139
179
.
34.
F.
Libisch
,
C.
Huang
, and
E. A.
Carter
,
Acc. Chem. Res.
47
,
2768
(
2014
).
35.
J.
Nafziger
and
A.
Wasserman
,
J. Phys. Chem. A
118
,
7623
(
2014
).
36.
C. R.
Jacob
and
J.
Neugebauer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
325
(
2014
).
37.
T. A.
Wesolowski
,
S.
Shedge
, and
X.
Zhou
,
Chem. Rev.
115
,
5891
(
2015
).
38.
A.
Krishtal
,
D.
Ceresoli
, and
M.
Pavanello
,
J. Chem. Phys.
142
,
154116
(
2015
).
39.
M.
Bensberg
and
J.
Neugebauer
,
J. Chem. Phys.
150
,
184104
(
2019
).
40.
C. R.
Jacob
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Phys.
126
,
234116
(
2007
).
41.
M.
Böckers
and
J.
Neugebauer
,
J. Chem. Phys.
149
,
074102
(
2018
).
42.
L.
Scholz
,
J.
Tölle
, and
J.
Neugebauer
,
Int. J. Quantum Chem.
120
,
e26213
(
2020
).
43.
D.
Claudino
and
N. J.
Mayhall
,
J. Chem. Theory Comput.
15
,
1053
(
2019
).
44.
M.
Pavanello
and
J.
Neugebauer
,
J. Chem. Phys.
135
,
234103
(
2011
).
45.
M.
Pavanello
,
T.
Van Voorhis
,
L.
Visscher
, and
J.
Neugebauer
,
J. Chem. Phys.
138
,
054101
(
2013
).
46.
A.
Solovyeva
,
M.
Pavanello
, and
J.
Neugebauer
,
J. Chem. Phys.
140
,
164103
(
2014
).
47.
A.
Schulz
and
C. R.
Jacob
,
J. Chem. Phys.
151
,
131103
(
2019
).
48.
J. P.
Unsleber
,
J.
Neugebauer
, and
C. R.
Jacob
,
Phys. Chem. Chem. Phys.
18
,
21001
(
2016
).
49.
C.-P.
Hsu
,
Z.-Q.
You
, and
H.-C.
Chen
,
J. Phys. Chem. C
112
,
1204
(
2008
).
50.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev.
105
,
4009
(
2005
).
51.
J. P.
Unsleber
,
T.
Dresselhaus
,
K.
Klahr
,
D.
Schnieders
,
M.
Böckers
,
D.
Barton
, and
J.
Neugebauer
,
J. Comput. Chem.
39
,
788
(
2018
).
52.
D.
Barton
,
M.
Bensberg
,
M.
Böckers
,
T.
Dresselhaus
,
P.
Eschenbach
,
L.
Hellmann
,
K.
Klahr
,
A.
Massolle
,
N.
Niemeyer
,
D.
Schnieders
,
J.
Tölle
,
J. P.
Unsleber
, and
J.
Neugebauer
2020
Zenodo, qcserenity/serenity: Release 1.3.0. .
53.
N.
Niemeyer
,
J.
Tölle
, and
J.
Neugebauer
,
J. Chem. Theory Comput.
16
,
3104
(
2020
).
54.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
55.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
56.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
57.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
58.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
59.
H.
Lee
,
C.
Lee
, and
R. G.
Parr
,
Phys. Rev. A
44
,
768
(
1991
).
60.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
61.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
62.
M.
Welborn
,
F. R.
Manby
, and
T. F.
Miller
 III
,
J. Chem. Phys.
149
,
144101
(
2018
).
63.
M.
Bensberg
and
J.
Neugebauer
,
J. Chem. Phys.
150
,
214106
(
2019
).
64.
M.
Humbert-Droz
,
X.
Zhou
,
S. V.
Shedge
, and
T. A.
Wesolowski
,
Theor. Chem. Acc.
133
,
1405
(
2014
).
65.
C.
Murphy
,
M.
Arkin
,
Y.
Jenkins
,
N.
Ghatlia
,
S.
Bossmann
,
N.
Turro
, and
J.
Barton
,
Science
262
,
1025
(
1993
).
66.
D.
Markovitsi
,
T.
Gustavsson
, and
F.
Talbot
,
Photochem. Photobiol. Sci.
6
,
717
(
2007
).
67.
C. T.
Middleton
,
K.
de La Harpe
,
C.
Su
,
Y. K.
Law
,
C. E.
Crespo-Hernández
, and
B.
Kohler
,
Annu. Rev. Phys. Chem.
60
,
217
(
2009
).
68.
K.
Siriwong
and
A. A.
Voityuk
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
780
(
2012
).
69.
R.
Improta
,
F.
Santoro
, and
L.
Blancafort
,
Chem. Rev.
116
,
3540
(
2016
).
70.
L.
Blancafort
and
A. A.
Voityuk
,
J. Chem. Phys.
140
,
095102
(
2014
).
71.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
72.
TURBOMOLE V7.1 2016, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007,
TURBOMOLE GmbH
, since
2007
.
73.
S. G.
Balasubramani
 et al,
J. Chem. Phys.
152
,
184107
(
2020
).
74.
P. G.
Szalay
,
T.
Watson
,
A.
Perera
,
V.
Lotrich
, and
R. J.
Bartlett
,
J. Phys. Chem. A
117
,
3149
(
2013
).
75.
L.
Cupellini
,
S.
Caprasecca
,
C. A.
Guido
,
F.
Müh
,
T.
Renger
, and
B.
Mennucci
,
J. Phys. Chem. Lett.
9
,
6892
(
2018
).
76.
F. C.
Ramos
,
M.
Nottoli
,
L.
Cupellini
, and
B.
Mennucci
,
Chem. Sci.
10
,
9650
(
2019
).
77.
L.
Cupellini
,
D.
Calvani
,
D.
Jacquemin
, and
B.
Mennucci
,
Nat. Commun.
11
,
662
(
2020
).

Supplementary Material

You do not currently have access to this content.