The machine-learned electron correlation (ML-EC) model is a regression model in the form of a density functional that reproduces the correlation energy density based on wavefunction theory. In a previous study [T. Nudejima et al., J. Chem. Phys. 151, 024104 (2019)], the ML-EC model was constructed using the correlation energy density from all-electron calculations with basis sets including core polarization functions. In this study, we applied the frozen core approximation (FCA) to the correlation energy density to reduce the computational cost of the response variable used in machine learning. The coupled cluster singles, doubles, and perturbative triples [CCSD(T)] correlation energy density obtained from a grid-based energy density analysis was analyzed within FCA and correlation-consistent basis sets without core polarization functions. The complete basis set (CBS) limit of the correlation energy density was obtained using the extrapolation and composite schemes. The CCSD(T)/CBS correlation energy densities based on these schemes showed reasonable behavior, indicating its appropriateness as a response variable. As expected, the computational time was significantly reduced, especially for systems containing elements with a large number of inner-shell electrons. Based on the density-to-density relationship, a large number of data (5 662 500 points), which were accumulated from 30 molecules, were sufficient to construct the ML-EC model. The valence-electron correlation energies and reaction energies calculated using the constructed model were in good agreement with the reference values, the latter of which were superior in accuracy to density functional calculations using 71 exchange–correlation functionals. The numerical results indicate that the FCA is useful for constructing a versatile model.

1.
R.
Colle
and
O.
Salvetti
,
Theor. Chim. Acta
37
,
329
(
1975
).
2.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
3.
B.
Miehlich
,
A.
Savin
,
H.
Stoll
, and
H.
Preuss
,
Chem. Phys. Lett.
157
,
200
(
1989
).
4.
E. I.
Proynov
,
E.
Ruiz
,
A.
Vela
, and
D. R.
Salahub
,
Int. J. Quantum Chem.
56
,
61
(
1995
).
5.
E. I.
Proynov
,
S.
Sirois
, and
D. R.
Salahub
,
Int. J. Quantum Chem.
64
,
427
(
1997
).
6.
T.
Tsuneda
and
K.
Hirao
,
Chem. Phys. Lett.
268
,
510
(
1997
).
7.
T.
Tsuneda
,
T.
Suzumura
, and
K.
Hirao
,
J. Chem. Phys.
110
,
10664
(
1999
).
8.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
9.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
10.
T.
Chachiyo
,
J. Chem. Phys.
145
,
021101
(
2016
).
11.
V. V.
Karasiev
,
J. Chem. Phys.
145
,
157101
(
2016
).
12.
Y.
Imamura
,
A.
Takahashi
, and
H.
Nakai
,
J. Chem. Phys.
126
,
034103
(
2007
).
13.
Y.
Imamura
and
H.
Nakai
,
J. Comput. Chem.
29
,
1555
(
2008
).
14.
H.
Nakai
,
Chem. Phys. Lett.
363
,
73
(
2002
).
15.
S. F.
Vyboishchikov
,
ChemPhysChem
18
,
3478
(
2017
).
16.
J. T.
Margraf
,
C.
Kunkel
, and
K.
Reuter
,
J. Chem. Phys.
150
,
244116
(
2019
).
17.
T.
Nudejima
,
Y.
Ikabata
,
J.
Seino
,
T.
Yoshikawa
, and
H.
Nakai
,
J. Chem. Phys.
151
,
024104
(
2019
).
18.
J. P.
Coe
,
J. Chem. Theory Comput.
14
,
5739
(
2018
).
19.
J. P.
Coe
,
J. Chem. Theory Comput.
15
,
6179
(
2019
).
20.
J. T.
Margraf
and
K.
Reuter
,
J. Phys. Chem. A
122
,
6343
(
2018
).
21.
J.
Townsend
and
K. D.
Vogiatzis
,
J. Phys. Chem. Lett.
10
,
4129
(
2019
).
22.
M.
Welborn
,
L.
Cheng
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
14
,
4772
(
2018
).
23.
L.
Cheng
,
M.
Welborn
,
A. S.
Christensen
, and
T. F.
Miller
 III
,
J. Chem. Phys.
150
,
131103
(
2019
).
24.
L.
Cheng
,
N. B.
Kovachki
,
M.
Welborn
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
15
,
6668
(
2019
).
25.
J. L.
McDonagh
,
A. F.
Silva
,
M. A.
Vincent
, and
P. L. A.
Popelier
,
J. Chem. Theory Comput.
14
,
216
(
2018
).
26.
R.
Nagai
,
R.
Akashi
,
S.
Sasaki
, and
S.
Tsuneyuki
,
J. Chem. Phys.
148
,
241737
(
2018
).
27.
R.
Nagai
,
R.
Akashi
, and
O.
Sugino
,
npj Comput. Mater.
6
,
43
(
2020
).
28.
H.
Ji
and
Y.
Jung
,
J. Chem. Phys.
148
,
241742
(
2018
).
29.
K.
Ryczko
,
D. A.
Strubbe
, and
I.
Tamblyn
,
Phys. Rev. A
100
,
022512
(
2019
).
30.
J.
Schmidt
,
C. L.
Benavides-Riveros
, and
M. A. L.
Marques
,
J. Phys. Chem. Lett.
10
,
6425
(
2019
).
31.
X.
Lei
and
A. J.
Medford
,
Phys. Rev. Mater.
3
,
063801
(
2019
).
32.
A.
Ryabov
,
I.
Akhatov
, and
P.
Zhilyaev
,
Sci. Rep.
10
,
8000
(
2020
).
33.
M. M.
Denner
,
M. H.
Fischer
, and
T.
Neupert
,
Phys. Rev. Res.
2
,
033388
(
2020
).
34.
S.
Dick
and
M.
Fernandez-Serra
,
Nat. Commun.
11
,
3509
(
2020
).
35.
A. V.
Sinitskiy
and
V. S.
Pande
, arXiv:1809.02723v1.
36.
A. V.
Sinitskiy
and
V. S.
Pande
, arXiv:1908.00971v2.
37.
M.
Bogojeski
,
L.
Vogt-Maranto
,
M. E.
Tuckerman
,
K.-R.
Müller
, and
K.
Burke
,
Nat. Commun.
11
,
5223
(
2020
).
38.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
39.
J.
Seino
and
H.
Nakai
,
J. Comput. Chem.
37
,
2304
(
2016
).
40.
R. K.
Nesbet
,
Phys. Rev.
109
,
1632
(
1958
).
41.
P.
Piecuch
,
S. A.
Kucharski
,
K.
Kowalski
, and
M.
Musiał
,
Comput. Phys. Commun.
149
,
71
(
2002
).
42.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
43.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
44.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, and
A. K.
Wilson
,
Theor. Chem. Acc.
128
,
69
(
2011
).
45.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
46.
K. A.
Peterson
and
T. H.
Dunning
,
J. Chem. Phys.
117
,
10548
(
2002
).
47.
J. P.
Perdew
and
K.
Schmidt
,
AIP Conf. Proc.
577
,
1
(
2001
).
48.
J. P.
Perdew
and
K.
Schmidt
, in
Density Functional Theory and Its Application to Materials
, edited by
V.
van Doren
,
C.
van Alsenoy
, and
P.
Geerlings
(
AIP
,
Melville, NY
,
2001
).
49.
J.
Jaramillo
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
1068
(
2003
).
50.
H.
Laqua
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Theory Comput.
14
,
3451
(
2018
).
51.
T. M.
Maier
,
A. V.
Arbuznikov
, and
M.
Kaupp
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1378
(
2019
).
52.
J.
Seino
,
R.
Kageyama
,
M.
Fujinami
,
Y.
Ikabata
, and
H.
Nakai
,
J. Chem. Phys.
148
,
241705
(
2018
).
53.
J.
Seino
,
R.
Kageyama
,
M.
Fujinami
,
Y.
Ikabata
, and
H.
Nakai
,
Chem. Phys. Lett.
734
,
136732
(
2019
).
54.
M.
Fujinami
,
R.
Kageyama
,
J.
Seino
,
Y.
Ikabata
, and
H.
Nakai
,
Chem. Phys. Lett.
748
,
137358
(
2020
).
55.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
114
,
108
(
2001
).
56.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
57.
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
58.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
59.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Köpf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Proceedings of the Advances in Neural Information Processing Systems (NIPS)
,
2019
.
60.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).

Supplementary Material

You do not currently have access to this content.