We report on quantum dynamical simulations of exciton diffusion in an oligo(para-phenylene vinylene) chain segment with 20 repeat units (OPV-20) at finite temperature, complementary to our recent study of the same system at T = 0 K [R. Binder and I. Burghardt, J. Chem. Phys. 152, 204120 (2020)]. Accurate quantum dynamical simulations are performed using the multi-layer multi-configuration time-dependent Hartree method as applied to a site-based Hamiltonian comprising 20 electronic states of Frenkel type and 460 vibrational modes, including site-local quinoid-distortion modes along with site-correlated bond-length alternation (BLA) modes, ring torsional modes, and an explicit harmonic-oscillator bath. A first-principles parameterized Frenkel–Holstein type Hamiltonian is employed, which accounts for correlations between the ring torsional modes and the anharmonically coupled BLA coordinates located at the same junction. Thermally induced fluctuations of the torsional modes are described by a stochastic mean-field approach, and their impact on the excitonic motion is characterized in terms of the exciton mean-squared displacement. A normal diffusion regime is observed under periodic boundary conditions, apart from transient localization features. Even though the polaronic exciton species are comparatively weakly bound, exciton diffusion is found to be a coherent—rather than hopping type—process, driven by the fluctuations of the soft torsional modes. Similar to the previous observations for oligothiophenes, the evolution for the most part exhibits a near-adiabatic dynamics of local exciton ground states (LEGSs) that adjust to the local conformational dynamics. However, a second mechanism, involving resonant transitions between neighboring LEGSs, gains importance at higher temperatures.

1.
Y.
Tamai
,
H.
Ohkita
,
H.
Benten
, and
S.
Ito
,
J. Phys. Chem. Lett.
6
,
3417
(
2015
).
2.
O. V.
Mikhnenko
,
P. W. M.
Blom
, and
T.-Q.
Nguyen
,
Energy Environ. Sci.
8
,
1867
(
2015
).
3.
D.
Raithel
,
S.
Baderschneider
,
T. B.
de Queiroz
,
R.
Lohwasser
,
J.
Köhler
,
M.
Thelakkat
,
S.
Kümmel
, and
R.
Hildner
,
Macromolecules
49
,
9553
(
2016
).
4.
A.
Thiessen
,
J.
Vogelsang
,
T.
Adachi
,
F.
Steiner
,
D.
Vanden Bout
, and
J. M.
Lupton
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
E3550
(
2013
).
5.
A. E.
Bragg
,
W.
Yu
,
J.
Zhou
, and
T.
Magnanelli
,
J. Phys. Chem. Lett.
7
,
3990
(
2016
).
6.
L.
Simine
and
P. J.
Rossky
,
J. Phys. Chem. Lett.
8
,
1752
(
2017
).
7.
A.
Köhler
and
H.
Bässler
,
Electronic Processes in Organic Semiconductors
(
Wiley-VCH Verlag
,
Weinheim, Germany
,
2015
).
8.
W.
Barford
,
Electronic and Optical Properties of Conjugated Polymers
, 2nd ed. (
Clarendon
,
Oxford
,
2013
).
9.
W.
Barford
and
M.
Marcus
,
J. Chem. Phys.
146
,
130902
(
2017
).
10.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
VCH-Wiley
,
2011
).
11.
T. E.
Dykstra
,
E.
Hennebicq
,
D.
Beljonne
,
J.
Gierschner
,
G.
Claudio
,
E. R.
Bittner
,
J.
Knoester
, and
G. D.
Scholes
,
J. Phys. Chem. B
113
,
656
(
2009
).
12.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
,
Phys. Rev. Lett.
92
,
218301
(
2004
).
13.
A.
De Sio
and
C.
Lienau
,
Phys. Chem. Chem. Phys.
19
,
18813
(
2017
).
14.
E.
Collini
and
G. D.
Scholes
,
Science
323
,
369
(
2009
).
15.
Y.
Song
,
C.
Hellmann
,
N.
Stingelin
, and
G. D.
Scholes
,
J. Chem. Phys.
142
,
212410
(
2015
).
16.
A. D.
Sio
,
F.
Camargo
,
K.
Winte
,
E.
Sommer
,
F.
Branchi
,
G.
Cerullo
, and
C.
Lienau
,
Eur. Phys. J. B
91
,
236
(
2018
).
17.
R.
Dutta
and
B.
Bagchi
,
J. Chem. Phys.
145
,
164907
(
2016
).
18.
J. M.
Moix
,
M.
Khasin
, and
J.
Cao
,
New J. Phys.
15
,
085010
(
2013
).
19.
J. R.
Mannouch
,
W.
Barford
, and
S.
Al-Assam
,
J. Chem. Phys.
148
,
034901
(
2018
).
20.
L.
Chen
,
Y.
Zhao
, and
Y.
Tanimura
,
J. Phys. Chem. Lett.
6
,
3110
(
2015
).
21.
J. B.
Delos
,
W. R.
Thorson
, and
S. K.
Knudson
,
Phys. Rev. A
6
,
709
(
1972
).
22.
G. D.
Billing
,
Chem. Phys. Lett.
100
,
535
(
1983
).
23.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
24.
S.
Hammes-Schiffer
and
J. C.
Tully
,
J. Chem. Phys.
101
,
4657
(
1994
).
25.
T.
Holstein
,
Ann. Phys.
8
,
325
(
1959
).
26.
X.
Zhang
,
Z.
Li
, and
G.
Lu
,
Phys. Rev. B
84
,
235208
(
2011
).
27.
T.
Nelson
,
S.
Fernandez-Alberti
,
A. E.
Roitberg
, and
S.
Tretiak
,
Phys. Chem. Chem. Phys.
15
,
9245
(
2013
).
28.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
,
Chem. Rev.
120
,
2215
(
2020
).
29.
L.
Wang
,
R.
Long
, and
O. V.
Prezhdo
,
Annu. Rev. Phys. Chem.
66
,
549
(
2015
).
30.
P. V.
Parandekar
and
J. C.
Tully
,
J. Chem. Phys.
122
,
094102
(
2005
).
31.
P. V.
Parandekar
and
J. C.
Tully
,
J. Chem. Theory Comput.
2
,
229
(
2006
).
32.
T.
Ma
,
M.
Bonfanti
,
P.
Eisenbrandt
,
R.
Martinazzo
, and
I.
Burghardt
,
J. Chem. Phys.
149
,
244107
(
2018
).
33.
R.
Hegger
,
R.
Binder
, and
I.
Burghardt
,
J. Chem. Theor. Comput.
16
,
5441
(
2020
).
34.
R.
Liang
,
S. J.
Cotton
,
R.
Binder
,
R.
Hegger
,
I.
Burghardt
, and
W. H.
Miller
,
J. Chem. Phys.
149
,
044101
(
2018
).
35.
L.
Chen
,
R.
Borrelli
, and
Y.
Zhao
,
J. Phys. Chem. A
121
,
8757
(
2017
).
36.
L.
Chen
,
M. F.
Gelin
, and
D. V.
Shalashilin
,
J. Chem. Phys.
151
,
244116
(
2019
).
37.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
38.
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
39.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
40.
H.
Wang
,
J. Phys. Chem. A
119
,
7951
(
2015
).
41.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
42.
U.
Manthe
,
J. Chem. Phys.
128
,
164116
(
2008
).
43.
O.
Vendrell
and
H.-D.
Meyer
,
J. Chem. Phys.
134
,
044135
(
2011
).
44.
R.
Binder
,
D.
Lauvergnat
, and
I.
Burghardt
,
Phys. Rev. Lett.
120
,
227401
(
2018
).
45.
R.
Binder
and
I.
Burghardt
,
Faraday Discuss.
221
,
406
(
2020
).
46.
R.
Binder
and
I.
Burghardt
,
J. Chem. Phys.
152
,
204120
(
2020
).
47.
R.
Binder
,
M.
Bonfanti
,
D.
Lauvergnat
, and
I.
Burghardt
,
J. Chem. Phys.
152
,
204119
(
2020
).
48.
R.
Binder
,
S.
Römer
,
J.
Wahl
, and
I.
Burghardt
,
J. Chem. Phys.
141
,
014101
(
2014
).
49.
W.
Barford
and
D.
Trembath
,
Phys. Rev. B
80
,
165418
(
2009
).
50.
A. V.
Malyshev
and
V. A.
Malyshev
,
Phys. Rev. B
63
,
195111
(
2001
).
51.
D. V.
Makhov
and
W.
Barford
,
Phys. Rev. B
81
,
165201
(
2010
).
52.
W. J. D.
Beenken
and
T.
Pullerits
,
J. Phys. Chem. B
108
,
6164
(
2004
).
53.
M. M.-L.
Grage
,
P. W.
Wood
,
A.
Ruseckas
,
T.
Pullerits
,
W.
Mitchell
,
P. L.
Burn
,
I. D. W.
Samuel
, and
V.
Sundström
,
J. Chem. Phys.
118
,
7644
(
2003
).
54.
S.
Tretiak
,
A.
Saxena
,
R. L.
Martin
, and
A. R.
Bishop
,
Phys. Rev. Lett.
89
,
097402
(
2002
).
55.
O. R.
Tozer
and
W.
Barford
,
J. Chem. Phys.
143
,
084102
(
2015
).
56.
F. C.
Spano
and
C.
Silva
,
Annu. Rev. Phys. Chem.
65
,
477
(
2014
).
57.

As detailed in Ref. 47, the range-separated ωB97XD hybrid functional was employed with the def2-SVP basis set using the Gaussian09 program package.

58.
A. N.
Panda
,
F.
Plasser
,
A. J. A.
Aquino
,
I.
Burghardt
, and
H.
Lischka
,
J. Phys. Chem. A
117
,
2181
(
2013
).
59.
D.
Lauvergnat
and
A.
Nauts
,
J. Chem. Phys.
116
,
8560
(
2002
).
60.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H.-D.
Meyer
, The MCTDH package, version 8.5, http://mctdh.uni-hd.de,
2011
.
61.
I.
Burghardt
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
111
,
2927
(
1999
).
62.
S.
Tretiak
and
S.
Mukamel
,
Chem. Rev.
102
,
3171
(
2002
).
63.
W. K.
Wootters
,
Phys. Rev. Lett.
80
,
2245
(
1998
).
64.
S.
Wüster
,
C.
Ates
,
A.
Eisfeld
, and
J. M.
Rost
,
Phys. Rev. Lett.
105
,
053004
(
2010
).
65.
A.
Lukyanov
,
A.
Malafeev
,
V.
Ivanov
,
H.-L.
Chen
,
K.
Kremer
, and
D.
Andrienko
,
J. Mater. Chem.
20
,
10475
(
2010
).
66.
N. V.
Tukachev
,
D. R.
Maslennikov
,
A. Y.
Sosorev
,
S.
Tretiak
, and
A.
Zhugayevych
,
J. Phys. Chem. Lett.
10
,
3232
(
2019
).
67.
S. P.
Kwasniewski
,
L.
Claes
,
J.-P.
François
, and
M. S.
Deleuze
,
J. Chem. Phys.
118
,
7823
(
2003
).
68.
R.
Augulis
,
A. V.
Malyshev
,
V. A.
Malyshev
,
A.
Pugžlys
,
J.
Knoester
, and
P. H. M.
van Loosdrecht
,
J. Phys. Chem. Lett.
1
,
2911
(
2010
).
69.

See Ref. 44, supplementary material.

70.
S.
Fratini
,
D.
Mayou
, and
S.
Ciuchi
,
Adv. Funct. Mater.
26
,
2292
(
2016
).
71.
O. V.
Mikhnenko
,
F.
Cordella
,
A. B.
Sieval
,
J. C.
Hummelen
,
P. W. M.
Blom
, and
M. A.
Loi
,
J. Phys. Chem. B
112
,
11601
(
2008
).
72.
E.
Titov
,
A.
Humeniuk
, and
R.
Mitrić
,
Phys. Chem. Chem. Phys.
20
,
25995
(
2018
).
73.
J.-L.
Brédas
and
R.
Silbey
,
Science
323
,
348
(
2009
).

Supplementary Material

You do not currently have access to this content.