An adaptation of the full configuration interaction quantum Monte Carlo (FCIQMC) method is presented for correlated electron problems containing heavy elements and the presence of significant relativistic effects. The modified algorithm allows for the sampling of the four-component spinors of the Dirac–Coulomb(–Breit) Hamiltonian within the relativistic no-pair approximation. The loss of spin symmetry and the general requirement for complex-valued Hamiltonian matrix elements are the most immediate considerations in expanding the scope of FCIQMC into the relativistic domain, and the alternatives for their efficient implementation are motivated and demonstrated. For the canonical correlated four-component chemical benchmark application of thallium hydride, we show that the necessary modifications do not particularly adversely affect the convergence of the systematic (initiator) error to the exact correlation energy for FCIQMC calculations, which is primarily dictated by the sparsity of the wavefunction, allowing the computational effort to somewhat bypass the formal increases in Hilbert space dimension for these problems. We apply the method to the larger problem of the spectroscopic constants of tin oxide, correlating 28 electrons in 122 Kramers-paired spinors, finding good agreement with experimental and prior theoretical relativistic studies.

1.
J.
Autschbach
, “
Perspective: Relativistic effects
,”
J. Chem. Phys.
136
,
150902
(
2012
).
2.
P.
Pyykkö
, “
Relativistic effects in chemistry: More common than you thought
,”
Annu. Rev. Phys. Chem.
63
,
45
64
(
2012
).
3.
S.
Knecht
,
H. J. A.
Jensen
, and
T.
Saue
, “
Relativistic quantum chemical calculations show that the uranium molecule U2 has a quadruple bond
,”
Nat. Chem.
11
,
40
44
(
2019
).
4.
J.
Vícha
,
M.
Straka
,
M. L.
Munzarová
, and
R.
Marek
, “
Mechanism of spin–orbit effects on the ligand NMR chemical shift in transition-metal complexes: Linking NMR to EPR
,”
J. Chem. Theory Comput.
10
,
1489
1499
(
2014
).
5.
N.
Ismail
,
J.-L.
Heully
,
T.
Saue
,
J.-P.
Daudey
, and
C. J.
Marsden
, “
Theoretical studies of the actinides: Method calibration for the UO2   2+ and PuO2   2+ ions
,”
Chem. Phys. Lett.
300
,
296
302
(
1999
).
6.
A.
Rutkowski
and
W. H. E.
Schwarz
, “
Effective Hamiltonian for near-degenerate states in direct relativistic perturbation theory. I. Formalism
,”
J. Chem. Phys.
104
,
8546
8552
(
1996
).
7.
G.
Baryshnikov
,
B.
Minaev
, and
H.
Ågren
, “
Theory and calculation of the phosphorescence phenomenon
,”
Chem. Rev.
117
,
6500
6537
(
2017
).
8.
S.
Matsika
and
D. R.
Yarkony
, “
On the effects of spin–orbit coupling on conical intersection seams in molecules with an odd number of electrons. I. Locating the seam
,”
J. Chem. Phys.
115
,
2038
2050
(
2001
).
9.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
2866
(
1992
).
10.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
, “
Semistochastic heat-bath configuration interaction method: Selected configuration interaction with semistochastic perturbation theory
,”
J. Chem. Theory Comput.
13
,
1595
1604
(
2017
).
11.
S.
Battaglia
,
S.
Keller
, and
S.
Knecht
, “
Efficient relativistic density-matrix renormalization group implementation in a matrix-product formulation
,”
J. Chem. Theory Comput.
14
,
2353
2369
(
2018
).
12.
B.
Mussard
and
S.
Sharma
, “
One-step treatment of spin–orbit coupling and electron correlation in large active spaces
,”
J. Chem. Theory Comput.
14
,
154
165
(
2018
).
13.
T.
Shiozaki
and
W.
Mizukami
, “
Relativistic internally contracted multireference electron correlation methods
,”
J. Chem. Theory Comput.
11
,
4733
4739
(
2015
).
14.
R. D.
Reynolds
and
T.
Shiozaki
, “
Zero-field splitting parameters from four-component relativistic methods
,”
J. Chem. Theory Comput.
15
,
1560
1571
(
2019
).
15.
H.
Hu
,
A. J.
Jenkins
,
H.
Liu
,
J. M.
Kasper
,
M. J.
Frisch
, and
X.
Li
, “
Relativistic two-component multireference configuration interaction method with tunable correlation space
,”
J. Chem. Theory Comput.
16
,
2975
2984
(
2020
).
16.
J. E.
Bates
and
T.
Shiozaki
, “
Fully relativistic complete active space self-consistent field for large molecules: Quasi-second-order minimax optimization
,”
J. Chem. Phys.
142
,
044112
(
2015
).
17.
K. G.
Dyall
, “
Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation
,”
J. Chem. Phys.
106
,
9618
9626
(
1997
).
18.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
, “
The zero-order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules
,”
J. Chem. Phys.
105
,
6505
6516
(
1996
).
19.
W.
Liu
and
D.
Peng
, “
Exact two-component Hamiltonians revisited
,”
J. Chem. Phys.
131
,
031104
(
2009
).
20.
W.
Kutzelnigg
, “
Basis set expansion of the Dirac operator without variational collapse
,”
Int. J. Quantum Chem.
25
,
107
129
(
1984
).
21.
M. S.
Kelley
and
T.
Shiozaki
, “
Large-scale Dirac–Fock–Breit method using density fitting and 2-spinor basis functions
,”
J. Chem. Phys.
138
,
204113
(
2013
).
22.
A.
Almoukhalalati
,
S.
Knecht
,
H. J. A.
Jensen
,
K. G.
Dyall
, and
T.
Saue
, “
Electron correlation within the relativistic no-pair approximation
,”
J. Chem. Phys.
145
,
074104
(
2016
).
23.
T.
Shiozaki
, “
Communication: An efficient algorithm for evaluating the Breit and spin–spin coupling integrals
,”
J. Chem. Phys.
138
,
111101
(
2013
).
24.
Z.
Cao
,
Z.
Li
,
F.
Wang
, and
W.
Liu
, “
Combining the spin-separated exact two-component relativistic Hamiltonian with the equation-of-motion coupled-cluster method for the treatment of spin–orbit splittings of light and heavy elements
,”
Phys. Chem. Chem. Phys.
19
,
3713
3721
(
2017
).
25.
L. K.
Sørensen
,
S.
Knecht
,
T.
Fleig
, and
C. M.
Marian
, “
Four-component relativistic coupled cluster and configuration interaction calculations on the ground and excited states of the RbYb molecule
,”
J. Phys. Chem. A
113
,
12607
12614
(
2009
).
26.
S.
Knecht
,
Ö.
Legeza
, and
M.
Reiher
, “
Communication: Four-component density matrix renormalization group
,”
J. Chem. Phys.
140
,
041101
(
2014
).
27.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
, “
Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space
,”
J. Chem. Phys.
131
,
054106
(
2009
).
28.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
, “
Semistochastic projector Monte Carlo method
,”
Phys. Rev. Lett.
109
,
230201
(
2012
).
29.
J. M.
Kasper
,
A. J.
Jenkins
,
S.
Sun
, and
X.
Li
, “
Perspective on Kramers symmetry breaking and restoration in relativistic electronic structure methods for open-shell systems
,”
J. Chem. Phys.
153
,
090903
(
2020
).
30.
T.
Saue
and
H. J. A.
Jensen
, “
Quaternion symmetry in relativistic molecular calculations: The Dirac–Hartree–Fock method
,”
J. Chem. Phys.
111
,
6211
6222
(
1999
).
31.
V. A.
Neufeld
and
A. J. W.
Thom
, “
Exciting determinants in quantum Monte Carlo: Loading the dice with fast, low-memory weights
,”
J. Chem. Theory Comput.
15
,
127
140
(
2019
).
32.
A. A.
Holmes
,
H. J.
Changlani
, and
C. J.
Umrigar
, “
Efficient heat-bath sampling in Fock space
,”
J. Chem. Theory Comput.
12
,
1561
1571
(
2016
).
33.
K.
Guther
,
R. J.
Anderson
,
N. S.
Blunt
,
N. A.
Bogdanov
,
D.
Cleland
,
N.
Dattani
,
W.
Dobrautz
,
K.
Ghanem
,
P.
Jeszenszki
,
N.
Liebermann
,
G. L.
Manni
,
A. Y.
Lozovoi
,
H.
Luo
,
D.
Ma
,
F.
Merz
,
C.
Overy
,
M.
Rampp
,
P. K.
Samanta
,
L. R.
Schwarz
,
J. J.
Shepherd
,
S. D.
Smart
,
E.
Vitale
,
O.
Weser
,
G. H.
Booth
, and
A.
Alavi
, “
NECI: N-electron configuration interaction with an emphasis on state-of-the-art stochastic methods
,”
J. Chem. Phys.
153
,
034107
(
2020
).
34.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
, “
Towards an exact description of electronic wavefunctions in real solids
,”
Nature
493
,
365
370
(
2013
).
35.
L.
Visscher
,
O.
Visser
,
P. J. C.
Aerts
,
H.
Merenga
, and
W. C.
Nieuwpoort
, “
Relativistic quantum chemistry: The MOLFDIR program package
,”
Comput. Phys. Commun.
81
,
120
144
(
1994
).
36.
S.
Knecht
,
H. J. A.
Jensen
, and
T.
Fleig
, “
Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH
,”
J. Chem. Phys.
132
,
014108
(
2010
).
37.
K.
Faegri
and
L.
Visscher
, “
Relativistic calculations on thallium hydride
,”
Theor. Chem. Acc.
105
,
265
267
(
2001
).
38.
Y.
Jeong Choi
,
Y.-K.
Han
, and
Y. S.
Lee
, “
The convergence of spin–orbit configuration interaction calculations for TlH and (113)H
,”
J. Chem. Phys.
115
,
3448
3453
(
2001
).
39.
DIRAC, a relativistic ab initio electronic structure program, release DIRAC13 (2013), written by
L.
Visscher
,
H. J. Aa.
Jensen
,
R.
Bast
, and
T.
Saue
, with contributions from
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
A. S. P.
Gomes
,
T.
Helgaker
,
J. K.
Lærdahl
,
Y. S.
Lee
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
C. V.
Larsen
,
H. S.
Nataraj
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
, see http://www.diracprogram.org,
2020
.
40.
T.
Saue
,
R.
Bast
,
A. S. P.
Gomes
,
H. J. A.
Jensen
,
L.
Visscher
,
I. A.
Aucar
,
R.
Di Remigio
,
K. G.
Dyall
,
E.
Eliav
,
E.
Fasshauer
,
T.
Fleig
,
L.
Halbert
,
E. D.
Hedegård
,
B.
Helmich-Paris
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
J. K.
Laerdahl
,
M. L.
Vidal
,
M. K.
Nayak
,
M.
Olejniczak
,
J. M. H.
Olsen
,
M.
Pernpointner
,
B.
Senjean
,
A.
Shee
,
A.
Sunaga
, and
J. N. P.
van Stralen
, “
The Dirac code for relativistic molecular calculations
,”
J. Chem. Phys.
152
,
204104
(
2020
).
41.
N. S.
Blunt
, “
Communication: An efficient and accurate perturbative correction to initiator full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
148
,
221101
(
2018
).
42.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
466
(
1989
).
43.
T.
Shiozaki
, “
BAGEL: Brilliantly advanced general electronic-structure library
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1331
(
2018
).
44.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2017
).
45.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
46.
E. D.
Hedegård
,
S.
Knecht
,
J. S.
Kielberg
,
H. J. A.
Jensen
, and
M.
Reiher
, “
Density matrix renormalization group with efficient dynamical electron correlation through range separation
,”
J. Chem. Phys.
142
,
224108
(
2015
).
47.
J.
Brandejs
,
J.
Višňák
,
L.
Veis
,
M.
Maté
,
Ö.
Legeza
, and
J.
Pittner
, “
Toward DMRG-tailored coupled cluster method in the 4c-relativistic domain
,”
J. Chem. Phys.
152
,
174107
(
2020
).
48.
T.
Kinoshita
,
O.
Hino
, and
R. J.
Bartlett
, “
Coupled-cluster method tailored by configuration interaction
,”
J. Chem. Phys.
123
,
074106
(
2005
).
49.
O.
Hino
,
T.
Kinoshita
,
G. K.-L.
Chan
, and
R. J.
Bartlett
, “
Tailored coupled cluster singles and doubles method applied to calculations on molecular structure and harmonic vibrational frequencies of ozone
,”
J. Chem. Phys.
124
,
114311
(
2006
).
50.
R. J.
Anderson
,
T.
Shiozaki
, and
G. H.
Booth
, “
Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework
,”
J. Chem. Phys.
152
,
054101
(
2020
).
51.
J. J.
Halson
,
R. J.
Anderson
, and
G. H.
Booth
, “
Improved stochastic multireference perturbation theory for correlated systems with large active spaces
,”
Mol. Phys.
118
,
e1802072
(
2020
).
52.
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
, “
Correlated ab initio calculations of spectroscopic parameters of SnO within the framework of the higher-order generalized Douglas–Kroll transformation
,”
J. Chem. Phys.
120
,
8624
8631
(
2004
).
53.
G. H.
Booth
,
S. D.
Smart
, and
A.
Alavi
, “
Linear-scaling and parallelisable algorithms for stochastic quantum chemistry
,”
Mol. Phys.
112
,
1855
1869
(
2014
).
54.
J. S.
Ogden
and
M. J.
Ricks
, “
Matrix isolation studies of group IV oxides. III. Infrared spectra and structures of SnO, Sn2O2, Sn3O3, and Sn4O4
,”
J. Chem. Phys.
53
,
896
903
(
1970
).
55.
M.
Reiher
and
A.
Wolf
, “
Relativistic effects in chemistry
,” in
Relativistic Quantum Chemistry
(
John Wiley & Sons, Ltd.
,
2014
), Chap. 16, pp.
605
630
.
56.
N. S.
Blunt
,
S. D.
Smart
,
J. A. F.
Kersten
,
J. S.
Spencer
,
G. H.
Booth
, and
A.
Alavi
, “
Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application
,”
J. Chem. Phys.
142
,
184107
(
2015
).
57.
R. E.
Thomas
,
Q.
Sun
,
A.
Alavi
, and
G. H.
Booth
, “
Stochastic multiconfigurational self-consistent field theory
,”
J. Chem. Theory Comput.
11
,
5316
5325
(
2015
).
58.
G.
Li Manni
,
S. D.
Smart
, and
A.
Alavi
, “
Combining the complete active space self-consistent field method and the full configuration interaction quantum Monte Carlo within a super-CI framework, with application to challenging metal-porphyrins
,”
J. Chem. Theory Comput.
12
,
1245
1258
(
2016
).
59.
C.
Overy
,
G. H.
Booth
,
N. S.
Blunt
,
J. J.
Shepherd
,
D.
Cleland
, and
A.
Alavi
, “
Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
141
,
244117
(
2014
).
60.
N. S.
Blunt
,
G. H.
Booth
, and
A.
Alavi
, “
Density matrices in full configuration interaction quantum Monte Carlo: Excited states, transition dipole moments, and parallel distribution
,”
J. Chem. Phys.
146
,
244105
(
2017
).
61.
N. S.
Blunt
,
S. D.
Smart
,
G. H.
Booth
, and
A.
Alavi
, “
An excited-state approach within full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
143
,
134117
(
2015
).
62.
K.
Ghanem
,
A. Y.
Lozovoi
, and
A.
Alavi
, “
Unbiasing the initiator approximation in full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
151
,
224108
(
2019
).
You do not currently have access to this content.