Using Monte Carlo simulations, we systematically investigate the effect of particle size distribution on the phase behavior of polydisperse hard disks. Compared with the commonly used Gaussian-like polydisperse hard disks [P. Sampedro Ruiz, Q.-l. Lei, and R. Ni, Commun. Phys. 2, 70 (2019)], we find that the phase behavior of polydisperse hard-disk systems with lognormal and triangle distributions is significantly different. In polydisperse hard-disk systems of lognormal distributions, although the phase diagram appears similar to that of Gaussian-like polydisperse hard disks, the re-entrant melting of the hexatic or solid phase cannot be observed in sedimentation experiments. For polydisperse hard-disk systems of triangle distributions, the phase behavior is qualitatively different from the Gaussian-like and lognormal distributions, and we cannot reach any system of true polydispersity larger than 0.06, which is due to the special shape of the triangle distribution. Our results suggest that the exact particle size distribution is of primary importance in determining the phase behavior of polydisperse hard disks, and we do not have a universal phase diagram for different polydisperse hard-disk systems.

1.
J. M.
Kosterlitz
and
D. J.
Thouless
,
J. Phys. C: Solid State Phys.
6
,
1181
(
1973
).
2.
B. I.
Halperin
and
D. R.
Nelson
,
Phys. Rev. Lett.
41
,
121
(
1978
).
3.
D. R.
Nelson
and
B. I.
Halperin
,
Phys. Rev. B
19
,
2457
(
1979
).
4.
A. P.
Young
,
Phys. Rev. B
19
,
1855
(
1979
).
5.
V.
Berezinskii
,
Sov. Phys. JETP
32
,
493
(
1971
).
6.
K. J.
Strandburg
,
Rev. Mod. Phys.
60
,
161
(
1988
).
7.
J. G.
Dash
,
Rev. Mod. Phys.
71
,
1737
(
1999
).
8.
U.
Gasser
,
J. Phys.: Condens. Matter
21
,
203101
(
2009
).
9.
S. T.
Chui
,
Phys. Rev. Lett.
48
,
933
(
1982
).
10.
Y.
Saito
,
Phys. Rev. Lett.
48
,
1114
(
1982
).
11.
K.
Binder
,
S.
Sengupta
, and
P.
Nielaba
,
J. Phys.: Condens. Matter
14
,
2323
(
2002
).
12.
K.
Zahn
,
R.
Lenke
, and
G.
Maret
,
Phys. Rev. Lett.
82
,
2721
(
1999
).
13.
P.
Karnchanaphanurach
,
B.
Lin
, and
S. A.
Rice
,
Phys. Rev. E
61
,
4036
(
2000
).
14.
Y.
Han
,
N. Y.
Ha
,
A. M.
Alsayed
, and
A. G.
Yodh
,
Phys. Rev. E
77
,
041406
(
2008
).
15.
S. A.
Rice
,
Chem. Phys. Lett.
479
,
1
(
2009
).
16.
C. A.
Murray
and
D. H.
Van Winkle
,
Phys. Rev. Lett.
58
,
1200
(
1987
).
17.
A. H.
Marcus
and
S. A.
Rice
,
Phys. Rev. Lett.
77
,
2577
(
1996
).
18.
H. H.
von Grünberg
,
P.
Keim
,
K.
Zahn
, and
G.
Maret
,
Phys. Rev. Lett.
93
,
255703
(
2004
).
19.
P.
Keim
,
G.
Maret
, and
H. H.
von Grünberg
,
Phys. Rev. E
75
,
031402
(
2007
).
20.
X.
Xu
and
S. A.
Rice
,
Phys. Rev. E
78
,
011602
(
2008
).
21.
E. P.
Bernard
and
W.
Krauth
,
Phys. Rev. Lett.
107
,
155704
(
2011
).
22.
M.
Engel
 et al,
Phys. Rev. E
87
,
042134
(
2013
).
23.
S. C.
Kapfer
and
W.
Krauth
,
Phys. Rev. Lett.
114
,
035702
(
2015
).
24.
J. A.
Anderson
,
J.
Antonaglia
,
J. A.
Millan
,
M.
Engel
, and
S. C.
Glotzer
,
Phys. Rev. X
7
,
021001
(
2017
).
25.
Y.-W.
Li
and
M. P.
Ciamarra
,
Phys. Rev. Mater.
2
,
045602
(
2018
).
26.
J.
Russo
and
N. B.
Wilding
,
Phys. Rev. Lett.
119
,
115702
(
2017
).
27.
P.
Sampedro Ruiz
,
Q.-l.
Lei
, and
R.
Ni
,
Commun. Phys.
2
,
70
(
2019
).
28.
P.
Bartlett
and
P. B.
Warren
,
Phys. Rev. Lett.
82
,
1979
(
1999
).
29.
M.
Fasolo
and
P.
Sollich
,
Phys. Rev. Lett.
91
,
068301
(
2003
).
30.
D. A.
Kofke
and
E. D.
Glandt
,
Mol. Phys.
64
,
1105
(
1988
).
31.
P. G.
Bolhuis
and
D. A.
Kofke
,
Phys. Rev. E
54
,
634
(
1996
).
32.
D. A.
Kofke
and
P. G.
Bolhuis
,
Phys. Rev. E
59
,
618
(
1999
).
33.
S.
Pronk
and
D.
Frenkel
,
Phys. Rev. E
69
,
066123
(
2004
).
34.
M.
Michel
,
S.
Karpfer
, and
W.
Krauth
,
J. Chem. Phys.
140
,
054116
(
2013
).
35.
J. E.
Mayer
and
W. W.
Wood
,
J. Chem. Phys.
42
,
4268
(
1965
).
36.
A. L.
Thorneywork
,
J. L.
Abbott
,
D. G. A. L.
Aarts
, and
R. P. A.
Dullens
,
Phys. Rev. Lett.
118
,
158001
(
2017
).

Supplementary Material

You do not currently have access to this content.