Electron–phonon interaction strongly affects and often limits charge transport in organic semiconductors (OSs). However, approaches to its experimental probing are still in their infancy. In this study, we probe the local electron–phonon interaction (quantified by the charge-transfer reorganization energy) in small-molecule OSs by means of Raman spectroscopy. Applying density functional theory calculations to four series of oligomeric OSs—polyenes, oligofurans, oligoacenes, and heteroacenes—we extend the previous evidence that the intense Raman vibrational modes considerably contribute to the reorganization energy in several molecules and molecular charge-transfer complexes, to a broader scope of OSs. The correlation between the contribution of the vibrational mode to the reorganization energy and its Raman intensity is especially prominent for the resonance conditions. The experimental Raman spectra obtained with various excitation wavelengths are in good agreement with the theoretical ones, indicating the reliability of our calculations. We also establish for the first time relations between the spectrally integrated Raman intensity, the reorganization energy, and the molecular polarizability for the resonance and off-resonance conditions. The results obtained are expected to facilitate the experimental studies of the electron–phonon interaction in OSs for an improved understanding of charge transport in these materials.

1.
2.
Y.
Li
,
V.
Coropceanu
, and
J.-L.
Brédas
, in
The WSPC Reference on Organic Electronics: Organic Semiconductors
, edited by
S.
Marder
and
J.-L.
Brédas
(
World Scientific Publishing
,
2016
), Vol. 1, Chap. 7, pp.
193
230
.
3.
A. Y.
Sosorev
,
I. Y.
Chernyshov
,
D. Y.
Paraschuk
, and
M. V.
Vener
, in
Molecular Spectroscopy: A Quantum Chemistry Approach
, edited by
Y.
Ozaki
,
M. J.
Wójcik
, and
J.
Popp
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2019
), Vol. 1, Chap. 15, pp.
425
458
.
4.
A. Y.
Sosorev
,
D. R.
Maslennikov
,
O. G.
Kharlanov
,
I. Y.
Chernyshov
,
V. V.
Bruevich
, and
D. Y.
Paraschuk
,
Phys. Status Solidi RRL
13
,
1800485
(
2019
).
5.
A.
Girlando
,
L.
Grisanti
,
M.
Masino
,
I.
Bilotti
,
A.
Brillante
,
R. G.
Della Valle
, and
E.
Venuti
,
Phys. Rev. B
82
,
035208
(
2010
).
6.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta, Rev. Biomembr.
811
,
265
(
1985
).
7.
A.
Köhler
and
H.
Bässler
, in
Electronic Processes in Organic Semiconductors
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2015
), Chap. 3, p.
193
.
8.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Brédas
,
Chem. Rev.
107
,
926
(
2007
).
9.
Z.
Shuai
,
H.
Geng
,
W.
Xu
,
Y.
Liao
, and
J.-M.
André
,
Chem. Soc. Rev.
43
,
2662
(
2014
).
10.
D. A.
da Silva Filho
,
V.
Coropceanu
,
D.
Fichou
,
N. E.
Gruhn
,
T. G.
Bill
,
J.
Gierschner
,
J.
Cornil
, and
J.-L.
Brédas
,
Philos. Trans. R. Soc., A
365
,
1435
(
2007
).
11.
K.
Vandewal
,
K.
Tvingstedt
, and
O.
Inganäs
, in
Semiconductors and Semimetals
, edited by
U.
Wüerfel
,
M.
Thorwart
, and
E. R.
Weber
(
Elsevier
,
2011
), Vol. 85, p.
261
.
12.
Y.
Fujihashi
,
M.
Higashi
, and
A.
Ishizaki
,
J. Phys. Chem. Lett.
9
,
4921
(
2018
).
13.
S.
Larsson
and
A.
Klimkñs
,
Mol. Cryst. Liq. Cryst.
355
,
217
(
2001
).
14.
A. Y.
Sosorev
,
Phys. Chem. Chem. Phys.
19
,
25478
(
2017
).
15.
16.
M.
Graus
,
M.
Grimm
,
C.
Metzger
,
M.
Dauth
,
C.
Tusche
,
J.
Kirschner
,
S.
Kummel
,
A.
Scholl
, and
F.
Reinert
,
Phys. Rev. Lett.
116
,
147601
(
2016
).
17.
S.
Duhm
,
Q.
Xin
,
S.
Hosoumi
,
H.
Fukagawa
,
K.
Sato
,
N.
Ueno
, and
S.
Kera
,
Adv. Mater.
24
,
901
(
2012
).
18.
S.
Kera
,
S.
Hosoumi
,
K.
Sato
,
H.
Fukagawa
,
S.-i.
Nagamatsu
,
Y.
Sakamoto
,
T.
Suzuki
,
H.
Huang
,
W.
Chen
,
A. T. S.
Wee
,
V.
Coropceanu
, and
N.
Ueno
,
J. Phys. Chem. C
117
,
22428
(
2013
).
19.
R. C.
Hatch
,
D. L.
Huber
, and
H.
Höchst
,
Phys. Rev. Lett.
104
,
047601
(
2010
).
20.
M. J.
Rice
,
L.
Pietronero
, and
P.
Brüesch
,
Solid State Commun.
21
,
757
(
1977
).
21.
M. J.
Rice
,
Solid State Commun.
31
,
93
(
1979
).
22.
M. M. T.
Salzillo
,
A.
Brillante
,
R. G.
Della Valle
,
E.
Venuti
, and
A.
Girlando
,
Adv. Electron. Mater.
6
,
2000208
(
2020
).
23.
A.
Girlando
,
R.
Bozio
,
C.
Pecile
, and
J. B.
Torrance
,
Phys. Rev. B
26
,
2306
(
1982
).
24.
A.
Painelli
,
A.
Girlando
, and
C.
Pecile
,
Solid State Commun.
52
,
801
(
1984
).
25.
C.
Pecile
,
A.
Palnelli
, and
A.
Girlando
,
Mol. Cryst. Liq. Cryst.
171
,
69
(
1989
).
26.
A.
Graja
,
Low-dimensional Organic Conductors
(
World Scientific
,
Singapore
,
1992
), Chap. 3.9, p.
124
.
27.
G.
Visentini
,
M.
Masino
,
C.
Bellitto
, and
A.
Girlando
,
Phys. Rev. B
58
,
9460
(
1998
).
28.
29.
G.
Zerbi
,
R.
Radaelli
,
M.
Veronelli
,
E.
Brenna
,
F.
Sannicolò
, and
G.
Zotti
,
J. Chem. Phys.
98
,
4531
(
1993
).
30.
J. T.
Lopez-Navarrete
,
B.
Tian
, and
G.
Zerbi
,
Solid State Commun.
74
,
199
(
1990
).
31.
C.
Castiglioni
,
J. T.
Lopez Navarrete
,
G.
Zerbi
, and
M.
Gussoni
,
Solid State Commun.
65
,
625
(
1988
).
32.
B.
Tian
and
G.
Zerbi
,
J. Chem. Phys.
92
,
3892
(
1990
).
33.
J. T. L.
Navarrete
and
G.
Zerbi
,
J. Chem. Phys.
94
,
965
(
1991
).
34.
A. Y.
Sosorev
,
Moscow Univ. Phys. Bull.
74
,
639
(
2019
).
35.
R.
Scholz
,
L.
Gissleń
,
C.
Himcinschi
,
I.
Vragović
,
E. M.
Calzado
,
E.
Louis
,
E.
San Fabián Maroto
, and
M. A.
Diáz-García
,
J. Phys. Chem. A
113
,
315
(
2009
).
36.
D. S.
Egolf
,
M. R.
Waterland
, and
A. M.
Kelley
,
J. Phys. Chem. B
104
,
10727
(
2000
).
37.
G.
Saito
and
Y.
Yoshida
,
Bull. Chem. Soc. Jpn.
80
,
1
(
2007
).
38.
A. Y.
Sosorev
and
D. Y.
Paraschuk
,
Isr. J. Chem.
54
,
650
(
2014
).
39.
F.-C.
Wu
,
H.-L.
Cheng
,
C.-H.
Yen
,
J.-W.
Lin
,
S.-J.
Liu
,
W.-Y.
Chou
, and
F.-C.
Tang
,
Phys. Chem. Chem. Phys.
12
,
2098
(
2010
).
40.
D. L.
Phillips
,
I. R.
Gould
,
J. W.
Verhoeven
,
D.
Tittelbach-Helmrich
, and
A. B.
Myers
,
Chem. Phys. Lett.
258
,
87
(
1996
).
41.
E. A.
Milán-Garcés
,
S.
Kaptan
, and
M.
Puranik
,
Biophys. J.
105
,
211
(
2013
).
42.
X. J.
Jordanides
,
M. J.
Lang
,
X.
Song
, and
G. R.
Fleming
,
J. Phys. Chem. B
103
,
7995
(
1999
).
43.
R.
Scholz
,
A. Y.
Kobitski
,
T. U.
Kampen
,
M.
Schreiber
,
D. R. T.
Zahn
,
G.
Jungnickel
,
M.
Elstner
,
M.
Sternberg
, and
T.
Frauenheim
,
Phys. Rev. B
61
,
13659
(
2000
).
44.
M.
Rumi
,
G.
Zerbi
,
K.
Müllen
,
G.
Müller
, and
M.
Rehahn
,
J. Chem. Phys.
106
,
24
(
1997
).
45.
L.
O’Neill
and
H. J.
Byrne
,
J. Phys. Chem. B
109
,
12685
(
2005
).
46.
L.
Salem
,
The Molecular Orbital Theory of Conjugated Systems
(
W. A. Benjamin, Inc.
,
Amsterdam, NY
,
1966
).
47.
H.
Yamagata
,
J.
Norton
,
E.
Hontz
,
Y.
Olivier
,
D.
Beljonne
,
J. L.
Brédas
,
R. J.
Silbey
, and
F. C.
Spano
,
J. Chem. Phys.
134
,
204703
(
2011
).
48.
O.
Gidron
,
Y.
Diskin-Posner
, and
M.
Bendikov
,
J. Am. Chem. Soc.
132
,
2148
(
2010
).
49.
O.
Gidron
and
M.
Bendikov
,
Angew. Chem., Int. Ed.
53
,
2546
(
2014
).
50.
N. V.
Tukachev
,
D. R.
Maslennikov
,
A. Y.
Sosorev
,
S.
Tretiak
, and
A.
Zhugayevych
,
J. Phys. Chem. Lett.
10
,
3232
(
2019
).
51.
A.
Painelli
,
L.
Del Freo
,
A.
Girlando
, and
Z. G.
Soos
,
Phys. Rev. B
60
,
8129
(
1999
).
52.
B. E.
Kohler
,
Chem. Rev.
93
,
41
(
1993
).
53.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
54.
M. S.
Gordon
and
M. W.
Schmidt
,
Theory and Applications of Computational Chemistry: The First Forty Years
(
Elsevier Science
,
2005
), Chap. 41, p.
1167
.
55.
J. P.
Merrick
,
D.
Moran
, and
L.
Radom
,
J. Phys. Chem. A
111
,
11683
(
2007
).
56.
E. J.
Heller
,
Acc. Chem. Res.
14
,
368
(
1981
).
57.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
,
J. Chem. Phys.
141
,
114108
(
2014
).
58.
A. Y.
Sosorev
,
V. A.
Trukhanov
,
D. R.
Maslennikov
,
O. V.
Borshchev
,
R. A.
Polyakov
,
M. S.
Skorotetcky
,
N. M.
Surin
,
M. S.
Kazantsev
,
D. I.
Dominskiy
,
V. A.
Tafeenko
,
S. A.
Ponomarenko
, and
D. Y.
Paraschuk
,
ACS Appl. Mater. Interfaces
12
,
9507
9519
(
2020
).
59.
N.
Bannister
,
J.
Skelton
,
G.
Kociok-Köhn
,
T.
Batten
,
E.
Da Como
, and
S.
Crampin
,
Phys. Rev. Mater.
3
,
125601
(
2019
).
60.
A. Y.
Sosorev
,
D. R.
Maslennikov
,
I. Y.
Chernyshov
,
D. I.
Dominskiy
,
V. V.
Bruevich
,
M. V.
Vener
, and
D. Y.
Paraschuk
,
Phys. Chem. Chem. Phys.
20
,
18912
18918
(
2018
).
61.
A. Y.
Sosorev
,
M. K.
Nuraliev
,
E. V.
Feldman
,
D. R.
Maslennikov
,
O. V.
Borshchev
,
M. S.
Skorotetcky
,
N. M.
Surin
,
M. S.
Kazantsev
,
S. A.
Ponomarenko
, and
D. Y.
Paraschuk
,
Phys. Chem. Chem. Phys.
21
,
11578
11588
(
2019
).
62.
M.
Saito
,
I.
Osaka
,
E.
Miyazaki
,
K.
Takimiya
,
H.
Kuwabara
, and
M.
Ikeda
,
Tetrahedron Lett.
52
,
285
(
2011
).
63.
O. V.
Borshchev
,
A. S.
Sizov
,
E. V.
Agina
,
A. A.
Bessonov
, and
S. A.
Ponomarenko
,
Chem. Commun.
53
,
885
(
2017
).
64.
S. R.
Ellis
,
D. R.
Dietze
,
T.
Rangel
,
F.
Brown-Altvater
,
J. B.
Neaton
, and
R. A.
Mathies
,
J. Phys. Chem. A
123
,
3863
3875
(
2019
).
65.
M. J. Y.
Tayebjee
,
R. G. C. R.
Clady
, and
T. W.
Schmidt
,
Phys. Chem. Chem. Phys.
15
,
14797
14805
(
2013
).
66.
S.
Canuto
,
M. C.
Zerner
, and
G. H. F.
Diercksen
,
Astrophys. J.
377
,
150
157
(
1991
).
67.
R. R.
Chadwick
,
M. Z.
Zgierski
, and
B. S.
Hudson
,
J. Chem. Phys.
95
,
7204
(
1991
).
68.
D. C.
McKean
,
N. C.
Craig
, and
Y. N.
Panchenko
,
J. Phys. Chem. A
110
,
8044
(
2006
).
69.
V.
Coropceanu
,
M.
Malagoli
,
D. A.
da Silva
,
N. E.
Gruhn
,
T. G.
Bill
, and
J.-L.
Brédas
,
Phys. Rev. Lett.
89
,
275503
(
2002
).
70.
S. M.
Smith
,
A. N.
Markevitch
,
D. A.
Romanov
,
X.
Li
,
R. J.
Levis
, and
H. B.
Schlegel
,
J. Phys. Chem. A
108
,
11063
(
2004
).
71.
G.
Heimel
,
D.
Somitsch
,
P.
Knoll
,
J.-L.
Brédas
, and
E.
Zojer
,
J. Chem. Phys.
122
,
114511
(
2005
).
72.
K. H.
Burns
,
P.
Srivastava
, and
C. G.
Elles
,
Anal. Chem.
92
,
10686
10692
(
2020
).

Supplementary Material

You do not currently have access to this content.