First principles based beyond Born–Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin–orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A′, 22A′, and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn–Teller (JT) type conical intersections between the two A′ states translate along C2v and linear geometries in F + H2. In addition, A′ and A″ states undergo Renner–Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system.

1.
J.
Parker
and
G. C.
Pimental
,
J. Chem. Phys.
51
,
91
(
1969
).
2.
R. D.
Coombe
and
G. C.
Pimentel
,
J. Chem. Phys.
59
,
251
(
1973
).
3.
J. C.
Polanyi
and
K. B.
Woodall
,
J. Chem. Phys.
57
,
1574
(
1972
).
4.
D. S.
Perry
and
J. C.
Polanyi
,
Chem. Phys.
12
,
37
(
1976
).
5.
J. C.
Polanyi
and
J. L.
Schreiber
,
Faraday Discuss. Chem. Soc.
62
,
267
(
1977
).
6.
T. P.
Schafer
,
P. E.
Siska
,
J. M.
Parson
,
F. P.
Tully
,
Y. C.
Wong
, and
Y. T.
Lee
,
J. Chem. Phys.
53
,
3385
(
1970
).
7.
D. M.
Neumark
,
A. M.
Wodtke
,
G. N.
Robinson
,
C. C.
Hayden
, and
Y. T.
Lee
,
J. Chem. Phys.
82
,
3045
(
1985
).
8.
D. M.
Neumark
,
A. M.
Wodtke
,
G. N.
Robinson
,
C. C.
Hayden
,
K.
Shobatake
,
R. K.
Sparks
,
T. P.
Schafer
, and
Y. T.
Lee
,
J. Chem. Phys.
82
,
3067
(
1985
).
9.
M.
Faubel
,
L.
Rusin
,
S.
Schlemmer
,
F.
Sondermann
,
U.
Tappe
, and
J. P.
Toennies
,
J. Chem. Phys.
101
,
2106
(
1994
).
10.
M.
Baer
,
M.
Faubel
,
B.
Martinez-Haya
,
L. Y.
Rusin
,
U.
Tappe
,
J. P.
Toennies
,
K.
Stark
, and
H. J.
Werner
,
J. Chem. Phys.
104
,
2743
(
1996
).
11.
M.
Baer
,
M.
Faubel
,
B.
Mart
nez-Haya
ı,
L. Y.
Rusin
,
U.
Tappe
, and
J. P.
Toennies
,
J. Chem. Phys.
108
,
9694
(
1998
).
12.
R. T.
Skodje
,
D.
Skouteris
,
D. E.
Manolopoulos
,
S.-H.
Lee
,
F.
Dong
, and
K.
Liu
,
Phys. Rev. Lett.
85
,
1206
(
2000
).
13.
R. T.
Skodje
,
D.
Skouteris
,
D. E.
Manolopoulos
,
S.-H.
Lee
,
F.
Dong
, and
K.
Liu
,
J. Chem. Phys.
112
,
4536
(
2000
).
14.
M.
Qiu
,
Z.
Ren
,
L.
Che
,
D.
Dai
,
S. A.
Harich
,
X.
Wang
,
X.
Yang
,
C.
Xu
,
D.
Xie
,
M.
Gustafsson
,
R. T.
Skodje
,
Z.
Sun
, and
D. H.
Zhang
,
Science
311
,
1440
(
2006
).
15.
X.
Wang
,
W.
Dong
,
M.
Qiu
,
Z.
Ren
,
L.
Che
,
D.
Dai
,
X.
Wang
,
X.
Yang
,
Z.
Sun
,
B.
Fu
,
S.-Y.
Lee
,
X.
Xu
, and
D. H.
Zhang
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
6227
(
2008
).
16.
Z.
Ren
,
L.
Che
,
M.
Qiu
,
X.
Wang
,
W.
Dong
,
D.
Dai
,
X.
Wang
,
X.
Yang
,
Z.
Sun
,
B.
Fu
,
S.-Y.
Lee
,
X.
Xu
, and
D. H.
Zhang
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
12662
(
2008
).
17.
C. F.
Bender
,
S. V.
O’Neil
,
P. K.
Pearson
, and
H. F.
Schaefer
 III
,
Science
176
,
1412
(
1972
).
18.
C. F.
Bender
,
P. K.
Pearson
,
S. V.
O’Neil
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
56
,
4626
(
1972
).
19.
J. T.
Muckerman
,
Theoretical Chemistry Advances and Perspectives
(
Academic Press
,
New York
,
1981
), Vol. 6A, p.
1
.
20.
T.
Takayanagi
and
S.
Sato
,
Chem. Phys. Lett.
144
,
191
(
1988
).
21.
F. B.
Brown
,
R.
Steckler
,
D. W.
Schwenke
,
D. G.
Truhlar
, and
B. C.
Garrett
,
J. Chem. Phys.
82
,
188
(
1985
).
22.
G. C.
Lynch
,
R.
Steckler
,
D. W.
Schwenke
,
A. J. C.
Varandas
,
D. G.
Truhlar
, and
B. C.
Garrett
,
J. Chem. Phys.
94
,
7136
(
1991
).
23.
S. L.
Mielke
,
G. C.
Lynch
,
D. G.
Truhlar
, and
D. W.
Schwenke
,
Chem. Phys. Lett.
213
,
10
(
1993
).
24.
F. J.
Aoiz
,
L.
Bañares
,
V. J.
Herrero
, and
V.
Sáez Rábanos
,
Chem. Phys. Lett.
218
,
422
(
1994
).
25.
K.
Stark
and
H. J.
Werner
,
J. Chem. Phys.
104
,
6515
(
1996
).
26.
J. F.
Castillo
,
D. E.
Manolopoulos
,
K.
Stark
, and
H. J.
Werner
,
J. Chem. Phys.
104
,
6531
(
1996
).
27.
F. J.
Aoiz
,
L.
Bañares
,
V. J.
Herrero
,
V.
Sáez Rábanos
,
K.
Stark
, and
H.-J.
Werner
,
Chem. Phys. Lett.
223
,
215
(
1994
).
28.
D. D.
Fazio
,
J. M.
Lucas
,
V.
Aquilanti
, and
S.
Cavalli
,
Phys. Chem. Chem. Phys.
13
,
8571
(
2011
).
29.
B.
Hartke
and
H.-J.
Werner
,
Chem. Phys. Lett.
280
,
430
(
1997
).
30.
M. H.
Alexander
,
D. E.
Manolopoulos
, and
H.-J.
Werner
,
J. Chem. Phys.
113
,
11084
(
2000
).
31.
G.
Li
,
H.-J.
Werner
,
F.
Lique
, and
M. H.
Alexander
,
J. Chem. Phys.
127
,
174302
(
2007
).
32.
C.
Xu
,
D.
Xie
, and
D. H.
Zhang
,
Chin. J. Chem. Phys.
19
,
96
(
2006
).
33.
J.
Chen
,
Z.
Sun
, and
D. H.
Zhang
,
J. Chem. Phys.
142
,
024303
(
2015
).
34.
Y.-Q.
Li
,
Y.-Z.
Song
, and
A. J. C.
Varandas
,
Eur. Phys. J. D
69
,
22
(
2015
).
35.
Y.-R.
Tzeng
and
M. H.
Alexander
,
J. Chem. Phys.
121
,
5183
(
2004
).
36.
F.
Lique
,
G.
Li
,
H.-J.
Werner
, and
M. H.
Alexander
,
J. Chem. Phys.
134
,
231101
(
2011
).
37.
A.
Das
,
D.
Mukhopadhyay
,
S.
Adhikari
, and
M.
Baer
,
Chem. Phys. Lett.
517
,
92
(
2011
).
38.
A.
Das
,
D.
Mukhopadhyay
,
S.
Adhikari
, and
M.
Baer
,
Eur. Phys. J. D
65
,
373
(
2011
).
39.
A.
Das
,
D.
Mukhopadhyay
,
S.
Adhikari
, and
M.
Baer
,
Int. J. Quantum Chem.
112
,
2561
(
2012
).
40.
A.
Das
,
T.
Sahoo
,
D.
Mukhopadhyay
,
S.
Adhikari
, and
M.
Baer
,
J. Chem. Phys.
136
,
054104
(
2012
).
41.
A.
Csehi
,
A.
Bende
,
G. J.
Halász
,
Á.
Vibók
,
A.
Das
,
D.
Mukhopadhyay
,
S.
Mukherjee
,
S.
Adhikari
, and
M.
Baer
,
J. Phys. Chem. A
117
,
8497
(
2013
).
42.
A.
Das
and
D.
Mukhopadhyay
,
Chem. Phys.
412
,
51
(
2013
).
43.
B. R.
Johnson
,
J. Chem. Phys.
79
,
1916
(
1983
).
44.
M.
Born
and
R.
Oppenheimer
,
Ann. Phys.
389
,
457
(
1927
).
45.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
Oxford
,
1954
).
46.
I.
Last
,
M.
Gilibert
, and
M.
Baer
,
J. Chem. Phys.
107
,
1451
(
1997
).
47.
R.
Baer
,
D. M.
Charutz
,
R.
Kosloff
, and
M.
Baer
,
J. Chem. Phys.
105
,
9141
(
1996
).
48.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
111
,
40
(
1999
).
49.
A. J. C.
Varandas
and
Z. R.
Xu
,
J. Chem. Phys.
112
,
2121
(
2000
).
50.
S.
Adhikari
,
G. D.
Billing
,
A.
Alijah
,
S. H.
Lin
, and
M.
Baer
,
Phys. Rev. A
62
,
32507
(
2000
).
51.
B.
Sarkar
and
S.
Adhikari
,
J. Chem. Phys.
124
,
074101
(
2006
).
52.
B.
Sarkar
and
S.
Adhikari
,
J. Phys. Chem. A
112
,
9868
(
2008
).
53.
A. K.
Paul
,
S.
Sardar
,
B.
Sarkar
, and
S.
Adhikari
,
J. Chem. Phys.
131
,
124312
(
2009
).
54.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
55.
A. J. C.
Varandas
,
F. B.
Brown
,
C. A.
Mead
,
D. G.
Truhlar
, and
N. C.
Blais
,
J. Chem. Phys.
86
,
6258
(
1987
).
56.
H.
Nakamura
and
D. G.
Truhlar
,
J. Chem. Phys.
118
,
6816
(
2003
).
57.
H.
Köppel
and
B.
Schubert
,
Mol. Phys.
104
,
1069
(
2006
).
58.
C.
Evenhuis
and
T. J.
Martínez
,
J. Chem. Phys.
135
,
224110
(
2011
).
59.
X.
Zhu
and
D. R.
Yarkony
,
J. Chem. Phys.
136
,
174110
(
2012
).
60.
62.
M.
Baer
,
Beyond Born-Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
(
Wiley-Interscience
,
New Jersey
,
2006
).
63.
M.
Baer
and
R.
Englman
,
Mol. Phys.
75
,
293
(
1992
).
64.
A.
Alijah
and
M.
Baer
,
J. Phys. Chem. A
104
,
389
(
2000
).
65.
S.
Mukherjee
,
S.
Bandyopadhyay
,
A. K.
Paul
, and
S.
Adhikari
,
J. Phys. Chem. A
117
,
3475
(
2013
).
66.
S.
Mukherjee
,
B.
Mukherjee
, and
S.
Adhikari
,
J. Phys. Chem. A
121
,
6314
(
2017
).
67.
S.
Mukherjee
,
J.
Dutta
,
B.
Mukherjee
,
S.
Sardar
, and
S.
Adhikari
,
J. Chem. Phys.
150
,
064308
(
2019
).
68.
S.
Mukherjee
,
B.
Mukherjee
,
S.
Sardar
, and
S.
Adhikari
,
J. Chem. Phys.
143
,
244307
(
2015
).
69.
B.
Mukherjee
,
S.
Mukherjee
,
S.
Sardar
,
K. R.
Shamasundar
, and
S.
Adhikari
,
Mol. Phys.
115
,
2833
(
2017
).
70.
B.
Mukherjee
,
S.
Mukherjee
,
S.
Sardar
,
K. R.
Shamasundar
, and
S.
Adhikari
,
Chem. Phys.
515
,
350
(
2018
).
71.
S.
Mukherjee
,
D.
Mukhopadhyay
, and
S.
Adhikari
,
J. Chem. Phys.
141
,
204306
(
2014
).
72.
S.
Ghosh
,
S.
Mukherjee
,
B.
Mukherjee
,
S.
Mandal
,
R.
Sharma
,
P.
Chaudhury
, and
S.
Adhikari
,
J. Chem. Phys.
147
,
074105
(
2017
).
73.
B.
Mukherjee
,
K.
Naskar
,
S.
Mukherjee
,
S.
Ghosh
,
T.
Sahoo
, and
S.
Adhikari
,
Int. Rev. Phys. Chem.
38
,
287
(
2019
).
74.
G. D.
Billing
and
J. T.
Muckerman
,
J. Chem. Phys.
91
,
6830
(
1989
).
75.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., Molpro, version 2018.2, a package of ab initio programs,
2018
, see http://www.molpro.net.
76.
A.
Berning
,
M.
Schweizer
,
H.-J.
Werner
,
P. J.
Knowles
, and
P.
Palmieri
,
Mol. Phys.
98
,
1823
(
2000
).
77.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R.
Pitzer
,
M.
Dallos
,
T.
Muller
,
P.
Szalay
,
F.
Brown
,
R.
Ahlrichs
,
H.
Boehm
 et al., Columbus, an ab initio electronic structure program, release 7.0,
2012
.
78.
G. J.
Halász
,
Á.
Vibók
,
R.
Baer
, and
M.
Baer
,
J. Phys. Chem.
124
,
081106
(
2006
).
79.
H. J.
Werner
,
B.
Follmeg
, and
M. H.
Alexander
,
J. Chem. Phys.
89
,
3139
(
1988
).
80.
K.
Naskar
,
S.
Mukherjee
,
B.
Mukherjee
,
S.
Ravi
,
S.
Mukherjee
,
S.
Sardar
, and
S.
Adhikari
,
J. Chem. Theory Comput.
16
,
1666
(
2020
).

Supplementary Material

You do not currently have access to this content.