Trajectory surface hopping simulations of photochemical reactions are a powerful and increasingly important tool to unravel complex photochemical reactivity. Within surface hopping, electronic transitions are mimicked by stochastic hops between electronic potential surfaces. Thus, statistical sampling is an inescapable component of trajectory-surface-hopping-based nonadiabatic molecular dynamics methods. However, the standard sampling strategy inhibits computational reproducibility, limits predictability, and results in trajectories that are overly sensitive to numerical parameters like the time step. We describe an equivalent approach to sampling electronic transitions within fewest switches surface hopping (FSSH) in which hops are decided in terms of the cumulative probability (FSSH-c) as opposed to the usual prescription, which is in terms of the instantaneous conditional probability (FSSH-i). FSSH-c is statistically equivalent to FSSH-i and can be implemented from trivial modifications to an existing surface hopping algorithm but has several key advantages: (i) a single trajectory is fully specified by just a handful of random numbers, (ii) all hopping decisions are independent of the time step such that the convergence behavior of individual trajectories can be explored, and (iii) alternative integral-based sampling schemes are enabled. In addition, we show that the conventional hopping probability overestimates the hopping rate and propose a simple scaling correction as a fix. Finally, we demonstrate these advantages numerically on model scattering problems.

1.
M.
Barbatti
, “
Nonadiabatic dynamics with trajectory surface hopping method
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
620
633
(
2011
).
2.
F.
Agostini
and
B. F. E.
Curchod
, “
Different flavors of nonadiabatic molecular dynamics
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1417
(
2019
).
3.
B.
Smith
and
A. V.
Akimov
, “
Modeling nonadiabatic dynamics in condensed matter materials: Some recent advances and applications
,”
J. Phys.: Condens. Matter
32
,
073001
(
2019
).
4.
B. F. E.
Curchod
,
A.
Sisto
, and
T. J.
Martínez
, “
Ab initio multiple spawning photochemical dynamics of DMABN using GPUs
,”
J. Phys. Chem. A
121
,
265
(
2017
).
5.
N.
Shenvi
,
S.
Roy
, and
J. C.
Tully
, “
Nonadiabatic dynamics at metal surfaces: Independent-electron surface hopping
,”
J. Chem. Phys.
130
,
174107
(
2009
).
6.
W.
Dou
and
J. E.
Subotnik
, “
Nonadiabatic molecular dynamics at metal surfaces
,”
J. Phys. Chem. A
124
,
757
771
(
2020
).
7.
T.
Fiedlschuster
,
J.
Handt
, and
R.
Schmidt
, “
Floquet surface hopping: Laser-driven dissociation and ionization dynamics of H2+
,”
Phys. Rev. A
93
,
053409
(
2016
).
8.
N. M.
Hoffmann
,
C.
Schäfer
,
N.
Säkkinen
,
A.
Rubio
,
H.
Appel
, and
A.
Kelly
, “
Benchmarking semiclassical and perturbative methods for real-time simulations of cavity-bound emission and interference
,”
J. Chem. Phys.
151
,
244113
(
2019
).
9.
J. B.
Pérez-Sánchez
and
J.
Yuen-Zhou
, “
Polariton assisted down-conversion of photons via nonadiabatic molecular dynamics: A molecular dynamical Casimir effect
,”
J. Phys. Chem. Lett.
11
,
152
159
(
2020
).
10.
C. F.
Craig
,
W. R.
Duncan
, and
O. V.
Prezhdo
, “
Trajectory surface hopping in the time-dependent Kohn-Sham approach for electron-nuclear dynamics
,”
Phys. Rev. Lett.
95
,
163001
(
2005
).
11.
E.
Tapavicza
,
I.
Tavernelli
, and
U.
Rothlisberger
, “
Trajectory surface hopping within linear response time-dependent density-functional theory
,”
Phys. Rev. Lett.
98
,
023001
(
2007
).
12.
E.
Tapavicza
,
I.
Tavernelli
,
U.
Rothlisberger
,
C.
Filippi
, and
M. E.
Casida
, “
Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry
,”
J. Chem. Phys.
129
,
124108
(
2008
).
13.
S. A.
Fischer
,
B. F.
Habenicht
,
A. B.
Madrid
,
W. R.
Duncan
, and
O. V.
Prezhdo
, “
Regarding the validity of the time-dependent Kohn–Sham approach for electron-nuclear dynamics via trajectory surface hopping
,”
J. Chem. Phys.
134
,
024102
(
2011
).
14.
I.
Tavernelli
,
B. F. E.
Curchod
, and
U.
Rothlisberger
, “
Nonadiabatic molecular dynamics with solvent effects: A LR-TDDFT QM/MM study of ruthenium (II) tris (bipyridine) in water
,”
Chem. Phys.
391
,
101
109
(
2011
).
15.
F.
Plasser
,
R.
Crespo-Otero
,
M.
Pederzoli
,
J.
Pittner
,
H.
Lischka
, and
M.
Barbatti
, “
Surface hopping dynamics with correlated single-reference methods: 9H-adenine as a case study
,”
J. Chem. Theory Comput.
10
,
1395
1405
(
2014
).
16.
S.-H.
Xia
,
B.-B.
Xie
,
Q.
Fang
,
G.
Cui
, and
W.
Thiel
, “
Excited-state intramolecular proton transfer to carbon atoms: Nonadiabatic surface-hopping dynamics simulations
,”
Phys. Chem. Chem. Phys.
17
,
9687
9697
(
2015
).
17.
M.
Barbatti
and
R.
Crespo-Otero
, “
Surface hopping dynamics with DFT excited states
,” in
Density-Functional Methods for Excited States
, Topics in Current Chemistry, edited by
N.
Ferré
,
M.
Filatov
, and
M.
Huix-Rotllant
(
Springer International Publishing
,
Cham
,
2016
), pp.
415
444
.
18.
A. J.
Atkins
and
L.
González
, “
Trajectory surface-hopping dynamics including intersystem crossing in [Ru(bpy)3]2+
,”
J. Phys. Chem. Lett.
8
,
3840
3845
(
2017
).
19.
M.
Muuronen
,
S. M.
Parker
,
E.
Berardo
,
A.
Le
,
M. A.
Zwijnenburg
, and
F.
Furche
, “
Mechanism of photocatalytic water oxidation on small TiO2 nanoparticles
,”
Chem. Sci.
8
,
2179
2183
(
2017
).
20.
L.
Yue
,
Y.
Liu
, and
C.
Zhu
, “
Performance of TDDFT with and without spin-flip in trajectory surface hopping dynamics: Cis–trans azobenzene photoisomerization
,”
Phys. Chem. Chem. Phys.
20
,
24123
24139
(
2018
).
21.
S. M.
Parker
,
S.
Roy
, and
F.
Furche
, “
Multistate hybrid time-dependent density functional theory with surface hopping accurately captures ultrafast thymine photodeactivation
,”
Phys. Chem. Chem. Phys.
21
,
18999
19010
(
2019
).
22.
S.
Roy
,
S.
Ardo
, and
F.
Furche
, “
5-methoxyquinoline photobasicity is mediated by water oxidation
,”
J. Phys. Chem. A
123
,
6645
6651
(
2019
).
23.
J.
Cao
and
D.-C.
Chen
, “
The excited-state relaxation mechanism of potential UVA-activated phototherapeutic molecules: Trajectory surface hopping simulations of both 4-thiothymine and 2,4-dithiothymine
,”
Phys. Chem. Chem. Phys.
22
,
10924
10933
(
2020
).
24.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
(
1990
).
25.
L.
Wang
,
A.
Akimov
, and
O. V.
Prezhdo
, “
Recent progress in surface hopping: 2011–2015
,”
J. Phys. Chem. Lett.
7
,
2100
2112
(
2016
).
26.
Y. L.
Volobuev
,
M. D.
Hack
,
M. S.
Topaler
, and
D. G.
Truhlar
, “
Continuous surface switching: An improved time-dependent self-consistent-field method for nonadiabatic dynamics
,”
J. Chem. Phys.
112
,
9716
9726
(
2000
).
27.
M. D.
Hack
and
D. G.
Truhlar
, “
A natural decay of mixing algorithm for non-Born–Oppenheimer trajectories
,”
J. Chem. Phys.
114
,
9305
9314
(
2001
).
28.
J. E.
Subotnik
and
N.
Shenvi
, “
A new approach to decoherence and momentum rescaling in the surface hopping algorithm
,”
J. Chem. Phys.
134
,
024105
(
2011
).
29.
H. M.
Jaeger
,
S.
Fischer
, and
O. V.
Prezhdo
, “
Decoherence-induced surface hopping
,”
J. Chem. Phys.
137
,
22A545
(
2012
).
30.
L.
Wang
,
D.
Trivedi
, and
O. V.
Prezhdo
, “
Global flux surface hopping approach for mixed quantum-classical dynamics
,”
J. Chem. Theory Comput.
10
,
3598
3605
(
2014
).
31.
L.
Wang
,
A. E.
Sifain
, and
O. V.
Prezhdo
, “
Communication: Global flux surface hopping in Liouville space
,”
J. Chem. Phys.
143
,
191102
(
2015
).
32.
S. K.
Min
,
F.
Agostini
, and
E. K. U.
Gross
, “
Coupled-trajectory quantum-classical approach to electronic decoherence in nonadiabatic processes
,”
Phys. Rev. Lett.
115
,
073001
(
2015
).
33.
C. C.
Martens
, “
Surface hopping by consensus
,”
J. Phys. Chem. Lett.
7
,
2610
2615
(
2016
).
34.
R.
Tempelaar
and
D. R.
Reichman
, “
Generalization of fewest-switches surface hopping for coherences
,”
J. Chem. Phys.
148
,
102309
(
2017
).
35.
S.
Nangia
,
A. W.
Jasper
,
T. F.
Miller
, and
D. G.
Truhlar
, “
Army ants algorithm for rare event sampling of delocalized nonadiabatic transitions by trajectory surface hopping and the estimation of sampling errors by the bootstrap method
,”
J. Chem. Phys.
120
,
3586
3597
(
2004
).
36.
F.
Kossoski
and
M.
Barbatti
, “
Nuclear ensemble approach with importance sampling
,”
J. Chem. Theory Comput.
14
,
3173
3183
(
2018
).
37.
R. K.
Preston
and
J. C.
Tully
, “
Effects of surface crossing in chemical reactions: The H3+ system
,”
J. Chem. Phys.
54
,
4297
4304
(
1971
).
38.
M.
Ben-Nun
,
J.
Quenneville
, and
T. J.
Martínez
, “
Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics
,”
J. Phys. Chem. A
104
,
5161
5175
(
2000
).
39.
B. F. E.
Curchod
,
W. J.
Glover
, and
T. J.
Martínez
, “
SSAIMS—Stochastic-selection ab initio multiple spawning for efficient nonadiabatic molecular dynamics
,”
J. Phys. Chem. A
124
,
6133
6143
(
2020
).
40.
National Academies of Sciences
,
Engineering, and Medicine, Reproducibility and Replicability in Science
(
The National Academies Press
,
Washington, DC
,
2019
).
41.
J. I.
Rodríguez
,
D. C.
Thompson
,
P. W.
Ayers
, and
A. M.
Köster
, “
Numerical integration of exchange-correlation energies and potentials using transformed sparse grids
,”
J. Chem. Phys.
128
,
224103
(
2008
).
42.
J.
Qiu
,
X.
Bai
, and
L.
Wang
, “
Subspace surface hopping with size-independent dynamics
,”
J. Phys. Chem. Lett.
10
,
637
644
(
2019
).
43.
A. J.
White
,
V. N.
Gorshkov
,
R.
Wang
,
S.
Tretiak
, and
D.
Mozyrsky
, “
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
,”
J. Chem. Phys.
141
,
184101
(
2014
).
44.
A. J.
White
,
V. N.
Gorshkov
,
S.
Tretiak
, and
D.
Mozyrsky
, “
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
,”
J. Chem. Phys.
143
,
014115
(
2015
).
45.
R.
Kapral
, “
Progress in the theory of mixed quantum-classical dynamics
,”
Annu. Rev. Phys. Chem.
57
,
129
157
(
2006
).
46.
Y.
Wu
and
M. F.
Herman
, “
A justification for a nonadiabatic surface hopping Herman-Kluk semiclassical initial value representation of the time evolution operator
,”
J. Chem. Phys.
125
,
154116
(
2006
).
47.
Mudslide 0.9, available at github.com/smparker/mudslide.
48.
B.
Martin
, “
Chapter 5: Sampling and estimation
,” in
Statistics for Physical Science
, edited by
B.
Martin
(
Academic Press
,
Boston
,
2012
), pp.
83
104
.
49.
A.
Odell
,
A.
Delin
,
B.
Johansson
,
N.
Bock
,
M.
Challacombe
, and
A. M. N.
Niklasson
, “
Higher-order symplectic integration in Born–Oppenheimer molecular dynamics
,”
J. Chem. Phys.
131
,
244106
(
2009
).
50.
N.
Luehr
,
T. E.
Markland
, and
T. J.
Martínez
, “
Multiple time step integrators in ab initio molecular dynamics
,”
J. Chem. Phys.
140
,
084116
(
2014
).
51.
A.
Jain
,
E.
Alguire
, and
J. E.
Subotnik
, “
An efficient, augmented surface hopping algorithm that includes decoherence for use in large-scale simulations
,”
J. Chem. Theory Comput.
12
,
5256
(
2016
).
52.
S. A.
Smolyak
, “
Quadrature and interpolation formulas for tensor products of certain classes of functions
,”
Dokl. Akad. Nauk SSSR
148
,
1042
1045
(
1963
).
53.
G.
Avila
and
T.
Carrington
, “
Nonproduct quadrature grids for solving the vibrational Schrödinger equation
,”
J. Chem. Phys.
131
,
174103
(
2009
).
54.
M.
Krack
and
A. M.
Köster
, “
An adaptive numerical integrator for molecular integrals
,”
J. Chem. Phys.
108
,
3226
3234
(
1998
).
55.
D. B.
Lingerfelt
,
D. B.
Williams-Young
,
A.
Petrone
, and
X.
Li
, “
Direct ab initio(meta-)surface-hopping dynamics
,”
J. Chem. Theory Comput.
12
,
935
(
2016
).
56.
J. E.
Subotnik
, “
Fewest-switches surface hopping and decoherence in multiple dimensions
,”
J. Phys. Chem. A
115
,
12083
12096
(
2011
).
57.
J.
Zheng
,
X.
Xu
,
R.
Meana-Pañeda
, and
D. G.
Truhlar
, “
Army ants tunneling for classical simulations
,”
Chem. Sci.
5
,
2091
2099
(
2014
).
58.
S.
van der Walt
,
S. C.
Colbert
, and
G.
Varoquaux
, “
The NumPy array: A structure for efficient numerical computation
,”
Comput. Sci. Eng.
13
,
22
30
(
2011
).

Supplementary Material

You do not currently have access to this content.