Ultra-long-chain fatty acids (ULCFAs) are biosynthesized in the restricted tissues such as retina, testis, and skin. The conformation of a single ULCFA, in which the sn-1 unsaturated chain has 32 carbons, in three types of phospholipid bilayers is studied by molecular dynamics simulations. It is found that the ultra-long tail of the ULCFA flips between two leaflets and fluctuates among an elongation into the opposite leaflet, lies between two leaflets, and turns back. As the number ratio of lipids in the opposite leaflet increases, the ratio of the elongated shape linearly decreases in all three cases. Thus, ULCFAs can sense the density differences between the two leaflets and respond to these changes.

1.
G.
van Meer
,
D. R.
Voelker
, and
G. W.
Feigenson
,
Nat. Rev. Mol. Cell Biol.
9
,
112
(
2008
).
2.
H.
Shindou
and
T.
Shimizu
,
J. Biol. Chem.
284
,
1
(
2009
).
3.
B.
Anthony
,
S.
Vanni
,
H.
Shindou
, and
T.
Ferreira
,
Trends Cell Biol
25
,
427
(
2015
).
4.
J. P.
SanGiovanni
and
E. Y.
Chew
,
Prog. Retinal Eye Res.
24
,
87
(
2005
).
5.
A.
McMahon
and
W.
Kedzierski
,
Br. J. Ophthalmol.
94
,
1127
(
2009
).
6.
P.
Barabas
,
A.
Liu
,
W.
Xing
,
C.-K.
Chen
,
Z.
Tong
,
C. B.
Watt
,
B. W.
Jones
,
P. S.
Bernstein
, and
D.
Križaj
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
5181
(
2013
).
7.
R.
Harkewicz
,
H.
Du
,
Z.
Tong
,
H.
Alkuraya
,
M.
Bedell
,
W.
Sun
,
X.
Wang
,
Y.-H.
Hsu
,
J.
Esteve-Rudd
,
G.
Hughes
,
Z.
Su
,
M.
Zhang
,
V. S.
Lopes
,
R. S.
Molday
,
D. S.
Williams
,
E. A.
Dennis
, and
K.
Zhang
,
J. Biol. Chem.
287
,
11469
(
2012
).
8.
F.
Deák
,
R. E.
Anderson
,
J. L.
Fessler
, and
D. M.
Sherry
,
Front. Cell. Neurosci.
13
,
428
(
2019
).
9.
M.
Müller
,
K.
Katsov
, and
M.
Schick
,
Phys. Rep.
434
,
113
(
2006
).
10.
M.
Venturoli
,
M.
Sperotto
,
M.
Kranenburg
, and
B.
Smit
,
Phys. Rep.
437
,
1
(
2006
).
11.
H.
Noguchi
,
J. Phys. Soc. Jpn.
78
,
041007
(
2009
).
12.
R. M.
Venable
,
F. L. H.
Brown
, and
R. W.
Pastor
,
Chem. Phys. Lipids
192
,
60
(
2015
).
13.
S. J.
Marrink
,
V.
Corradi
,
P. C. T.
Souza
,
H. I.
Ingólfsson
,
D. P.
Tieleman
, and
M. S. P.
Sansom
,
Chem. Rev.
119
,
6184
(
2019
).
14.
A. P.
Ramos
,
P.
Lagë
,
G.
Lamoureux
, and
M.
Lafleur
,
J. Phys. Chem. B
120
,
6951
(
2016
).
15.
R.
Gupta
,
B. S.
Dwadasi
, and
B.
Rai
,
J. Phys. Chem. B
120
,
12536
(
2016
).
16.
T.
Róg
,
A.
Orłowski
,
A.
Llorente
,
T.
Skotland
,
T.
Sylvänne
,
D.
Kauhanen
,
K.
Ekroos
,
K.
Sandvig
, and
I.
Vattulainen
,
Biochim. Biophys. Acta
1858
,
281
(
2016
).
17.
M.
Manna
,
M.
Javanainen
,
H. M.-S.
Monne
,
H.-J.
Gabius
,
T.
Rog
, and
I.
Vattulainen
,
Biochim. Biophys. Acta
1859
,
870
(
2017
).
18.
E.
Wang
and
J. B.
Klauda
,
J. Phys. Chem. B
122
,
2757
(
2018
).
20.
S.
Svetina
and
B.
Žekš
,
Adv. Colloid Interface Sci.
208
,
189
(
2014
).
21.
R. D.
Kornberg
and
H. M.
McConnell
,
Biochemistry
10
,
1111
(
1971
).
22.
J. B.
Klauda
,
R. M.
Venable
,
J. A.
Freites
,
J. W.
O’Connor
,
D. J.
Tobias
,
C.
Mondragon-Ramirez
,
I.
Vorobyov
,
A. D.
MacKerell
, Jr.
, and
R. W.
Pastor
,
J. Phys. Chem. B
114
,
7830
(
2010
).
23.
A. D.
MacKerell
, Jr.
and
R. W.
Pa
,
J. Phys. Chem. B
102
(
18
) ,
3586
3616
(
2010
).
24.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
25.
W. G.
Hoover
and
B. L.
Holian
,
Phys. Lett. A
211
,
253
(
1996
).
26.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
27.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1-2
,
19
(
2015
).
28.
S.
Jo
,
T.
Kim
,
V. G.
Iyer
, and
W.
Im
,
J. Comput. Chem.
29
,
1859
(
2008
).
29.
J.
Lee
,
X.
Cheng
,
J. M.
Swails
,
M. S.
Yeom
,
P. K.
Eastman
,
J. A.
Lemkul
,
S.
Wei
,
J.
Buckner
,
J. C.
Jeong
,
Y.
Qi
 et al,
J. Chem. Theory Comput.
12
,
405
(
2015
).
30.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
31.
J. H.
Davis
,
Biochim. Biophys. Acta
737
,
117
(
1983
).

Supplementary Material

You do not currently have access to this content.