Attaining accurate average structural properties in a molecular simulation should be considered a prerequisite if one aims to elicit meaningful insights into a system’s behavior. For charged surfaces in contact with an electrolyte solution, an obvious example is the density profile of ions along the direction normal to the surface. Here, we demonstrate that, in the slab geometry typically used in simulations, imposing an electric displacement field D determines the integrated surface charge density of adsorbed ions at charged interfaces. This allows us to obtain macroscopic surface charge densities irrespective of the slab thickness used in our simulations. We also show that the commonly used Yeh–Berkowitz method and the “mirrored slab” geometry both impose vanishing integrated surface charge densities. We present results both for relatively simple rocksalt (1 1 1) interfaces and the more complex case of kaolinite’s basal faces in contact with an aqueous electrolyte solution.

1.
S. L.
Swartzen-Allen
and
E.
Matijevic
,
Chem. Rev.
74
,
385
(
1974
).
2.
G.
Sposito
,
N. T.
Skipper
,
R.
Sutton
,
S.-h.
Park
,
A. K.
Soper
, and
J. A.
Greathouse
,
Proc. Natl. Acad. Sci. U. S. A.
96
,
3358
(
1999
).
3.
K.
Xu
,
Chem. Rev.
104
,
4303
(
2004
).
4.
K.
Xu
,
Chem. Rev.
114
,
11503
(
2014
).
5.
M.
Salanne
,
B.
Rotenberg
,
K.
Naoi
,
K.
Kaneko
,
P.-L.
Taberna
,
C. P.
Grey
,
B.
Dunn
, and
P.
Simon
,
Nat. Energy
1
,
16070
(
2016
).
6.
D.
Mora-Fonz
,
T.
Lazauskas
,
M. R.
Farrow
,
C. R. A.
Catlow
,
S. M.
Woodley
, and
A. A.
Sokol
,
Chem. Mater.
29
,
5306
(
2017
).
7.
R.
Hartkamp
,
A.-L.
Biance
,
L.
Fu
,
J.-F.
Dufrêche
,
O.
Bonhomme
, and
L.
Joly
,
Curr. Opin. Colloid Interface Sci.
37
,
101
(
2018
).
8.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
García
,
J. Phys. Chem.
100
,
1206
(
1996
).
9.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
111
,
3155
(
1999
).
10.
P. H.
Hünenberger
and
J. A.
McCammon
,
J. Chem. Phys.
110
,
1856
(
1999
).
11.
S. J.
Cox
and
P. L.
Geissler
,
J. Chem. Phys.
148
,
222823
(
2018
).
12.
C.
Zhang
and
M.
Sprik
,
Phys. Rev. B
94
,
245309
(
2016
).
13.
T.
Sayer
,
C.
Zhang
, and
M.
Sprik
,
J. Chem. Phys.
147
,
104702
(
2017
).
14.
T.
Sayer
,
M.
Sprik
, and
C.
Zhang
,
J. Chem. Phys.
150
,
041716
(
2019
).
15.
T.
Sayer
and
S. J.
Cox
,
Phys. Chem. Chem. Phys.
21
,
14546
(
2019
).
16.
Source code that implements the finite field approach in LAMMPS is freely available at https://github.com/uccasco/FiniteFields.
17.
P. W.
Tasker
,
J. Phys. C: Solid State Phys.
12
,
4977
(
1979
).
18.
R. W.
Nosker
,
P.
Mark
, and
J. D.
Levine
,
Surf. Sci.
19
,
291
(
1970
).
19.
J.
Goniakowski
,
F.
Finocchi
, and
C.
Noguera
,
Rep. Prog. Phys.
71
,
016501
(
2008
).
20.
C.
Noguera
,
J. Phys.: Condens. Matter
12
,
R367
(
2000
).
21.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
San Diego, USA
,
2002
).
22.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
Oxford, UK
,
2017
).
23.
C.
Zhang
and
M.
Sprik
,
Phys. Rev. B
93
,
144201
(
2016
).
24.
E.
Spohr
,
J. Chem. Phys.
107
,
6342
(
1997
).
25.
I.-C.
Yeh
and
A.
Wallqvist
,
J. Chem. Phys.
134
,
02B612
(
2011
).
26.
T.
Croteau
,
A. K.
Bertram
, and
G. N.
Patey
,
J. Phys. Chem. A
113
,
7826
(
2009
).
27.
B.
Glatz
and
S.
Sarupria
,
J. Chem. Phys.
145
,
211924
(
2016
).
28.
S. A.
Zielke
,
A. K.
Bertram
, and
G. N.
Patey
,
J. Phys. Chem. B
120
,
2291
(
2016
).
29.
B.
Glatz
and
S.
Sarupria
,
Langmuir
34
,
1190
(
2017
).
30.
Y.
Ren
,
A. K.
Bertram
, and
G. N.
Patey
,
J. Phys. Chem. B
124
,
4605
(
2020
).
31.
G.
Roudsari
,
B.
Reischl
,
O. H.
Pakarinen
, and
H.
Vehkamäki
,
J. Phys. Chem. C
124
,
436
(
2019
).
32.
C.
Zhang
,
J.
Hutter
, and
M.
Sprik
,
J. Phys. Chem. Lett.
10
,
3871
(
2019
).
33.
C.
Zhang
,
J. Chem. Phys.
149
,
031103
(
2018
).
34.
C.
Zhang
,
J.
Hutter
, and
M.
Sprik
,
J. Phys. Chem. Lett.
7
,
2696
(
2016
).
35.
C.
Zhang
,
J. Chem. Phys.
148
,
156101
(
2018
).
36.
C.
Zhang
and
M.
Sprik
,
Phys. Chem. Chem. Phys.
22
,
10676
(
2020
).
37.
S. J.
Cox
,
Proc. Natl. Acad. Sci. U. S. A.
117
,
19746
(
2020
).
38.
D.
Pache
and
R.
Schmid
,
ChemElectroChem
5
,
1444
(
2018
).
39.
S. J.
Cox
and
M.
Sprik
,
J. Chem. Phys.
151
,
064506
(
2019
).
40.
T.
Dufils
,
G.
Jeanmairet
,
B.
Rotenberg
,
M.
Sprik
, and
M.
Salanne
,
Phys. Rev. Lett.
123
,
195501
(
2019
).
41.
M.
Sprik
,
Mol. Phys.
116
,
3114
(
2018
).
42.
C.
Zhang
,
T.
Sayer
,
J.
Hutter
, and
M.
Sprik
,
J. Phys.: Energy
2
,
032005
(
2020
).
43.
C.
Pan
,
S.
Yi
, and
Z.
Hu
,
Phys. Chem. Chem. Phys.
21
,
14858
(
2019
).
44.

For the wurtzite crystal structure of AgI studied in Ref. 15, more rapid convergence with n is seen than for the rocksalt structure.

45.
S. J.
Cox
,
Z.
Raza
,
S. M.
Kathmann
,
B.
Slater
, and
A.
Michaelides
,
Faraday Discuss.
167
,
389
(
2013
).
46.
G. C.
Sosso
,
G. A.
Tribello
,
A.
Zen
,
P.
Pedevilla
, and
A.
Michaelides
,
J. Chem. Phys.
145
,
211927
(
2016
).
47.
S. A.
Zielke
,
A. K.
Bertram
, and
G. N.
Patey
,
J. Phys. Chem. B
120
,
1726
(
2015
).
48.
S. J.
Cox
,
D. J. F.
Taylor
,
T. G. A.
Youngs
,
A. K.
Soper
,
T. S.
Totton
,
R. G.
Chapman
,
M.
Arjmandi
,
M. G.
Hodges
,
N. T.
Skipper
, and
A.
Michaelides
,
J. Am. Chem. Soc.
140
,
3277
(
2018
).
49.
I. F.
Vasconcelos
,
B. A.
Bunker
, and
R. T.
Cygan
,
J. Phys. Chem. C
111
,
6753
(
2007
).
50.
C. M.
Tenney
and
R. T.
Cygan
,
Environ, Sci. Technol.
48
,
2035
(
2014
).
51.
R. T.
Cygan
,
J.-J.
Liang
, and
A. G.
Kalinichev
,
J. Phys. Chem. B
108
,
1255
(
2004
).
52.
I. S.
Joung
and
T. E.
Cheatham
 III
,
J. Phys. Chem. B
112
,
9020
(
2008
).
53.
P.
Wirnsberger
,
D.
Fijan
,
A.
Šarić
,
M.
Neumann
,
C.
Dellago
, and
D.
Frenkel
,
J. Chem. Phys.
144
,
224102
(
2016
).
54.
L.
Jiang
,
S. V.
Levchenko
, and
A. M.
Rappe
,
Phys. Rev. Lett.
108
,
166403
(
2012
).
55.
S. L.
Price
,
Faraday Discuss.
211
,
9
(
2018
).
56.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
57.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
(
1983
).
58.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
,
Phys. Rev. B
69
,
134103
(
2004
).
59.
M. E.
Tuckerman
,
J.
Alejandre
,
R.
López-Rendón
,
A. L.
Jochim
, and
G. J.
Martyna
,
J. Phys. A: Math. Gen.
39
,
5629
(
2006
).
60.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
1988
).
61.
J.
Kolafa
and
J. W.
Perram
,
Mol. Sim.
9
,
351
(
1992
).
62.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
63.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).

Supplementary Material

You do not currently have access to this content.