Semiconducting nanoplatelets (NPLs) have attracted great attention due to the superior photophysical properties compared to their quantum dot analogs. Understanding and tuning the optical and electronic properties of NPLs in a plasmonic environment is a new paradigm in the field of optoelectronics. Here, we report on the resonant plasmon enhancement of light emission including Raman scattering and photoluminescence from colloidal CdSe/CdS nanoplatelets deposited on arrays of Au nanodisks fabricated by electron beam lithography. The localized surface plasmon resonance (LSPR) of the Au nanodisk arrays can be tuned by varying the diameter of the disks. In the case of surface-enhanced Raman scattering (SERS), the Raman intensity profile follows a symmetric Gaussian shape matching the LSPR of the Au nanodisk arrays. The surface-enhanced photoluminescence (SEPL) profile of NPLs, however, follows an asymmetric Gaussian distribution highlighting a compromise between the excitation and emission enhancement mechanisms originating from energy transfer and Purcell effects. The SERS and SEPL enhancement factors depend on the nanodisk size and reach maximal values at 75 and 7, respectively, for the sizes, for which the LSPR energy of Au nanodisks coincides with interband transition energies in the semiconductor platelets. Finally, to explain the origin of the resonant enhancement behavior of SERS and SEPL, we apply a numerical simulation to calculate plasmon energies in Au nanodisk arrays and emission spectra from NPLs in such a plasmonic environment.

1.
K. L.
Sowers
,
B.
Swartz
, and
T. D.
Krauss
, “
Chemical mechanisms of semiconductor nanocrystal synthesis
,”
Chem. Mater.
25
(
8
),
1351
1362
(
2013
).
2.
V.
Lesnyak
,
N.
Gaponik
, and
A.
Eychmüller
, “
Colloidal semiconductor nanocrystals: The aqueous approach
,”
Chem. Soc. Rev.
42
(
7
),
2905
2929
(
2013
).
3.
J. J.
Wang
,
J. S.
Hu
,
Y. G.
Guo
, and
L. J.
Wan
, “
Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic-inorganic hybrid photodetectors
,”
NPG Asia Mater.
4
(
1
),
e2
(
2012
).
4.
L.
Han
 et al, “
Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells
,”
Nanotechnology
17
(
18
),
4736
4742
(
2006
).
5.
R. C.
Somers
,
M. G.
Bawendi
, and
D. G.
Nocera
, “
CdSe nanocrystal based chem-/bio-sensors
,”
Chem. Soc. Rev.
36
(
4
),
579
591
(
2007
).
6.
S. Z.
Bisri
,
C.
Piliego
,
M.
Yarema
,
W.
Heiss
, and
M. A.
Loi
, “
Low driving voltage and high mobility ambipolar field-effect transistors with PbS colloidal nanocrystals
,”
Adv. Mater.
25
(
31
),
4309
4314
(
2013
).
7.
Y.-T.
Nien
,
B.
Zaman
,
J.
Ouyang
,
I.-G.
Chen
,
C.-S.
Hwang
, and
K.
Yu
, “
Raman scattering for the size of CdSe and CdS nanocrystals and comparison with other techniques
,”
Mater. Lett.
62
(
30
),
4522
4524
(
2008
).
8.
S. V.
Kershaw
,
A. S.
Susha
, and
A. L.
Rogach
, “
Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties
,”
Chem. Soc. Rev.
42
(
7
),
3033
3087
(
2013
).
9.
C. B.
Murray
,
D. J.
Norris
, and
M. G.
Bawendi
, “
Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites
,”
J. Am. Chem. Soc.
115
(
19
),
8706
8715
(
1993
).
10.
S.
Ithurria
and
B.
Dubertret
, “
Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level
,”
J. Am. Chem. Soc.
130
,
16504
16505
(
2008
).
11.
U.
Giovanella
 et al, “
Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air
,”
Nano Lett.
18
,
3441
3448
(
2018
).
12.
Z.
Li
,
H.
Qin
,
D.
Guzun
,
M.
Benamara
,
G.
Salamo
, and
X.
Peng
, “
Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties
,”
Nano Res.
5
(
5
),
337
351
(
2012
).
13.
V. M.
Dzhagan
,
Y. M.
Azhniuk
,
A. G.
Milekhin
, and
D. R. T.
Zahn
, “
Vibrational spectroscopy of compound semiconductor nanocrystals
,”
J. Phys. D: Appl. Phys.
51
(
50
),
503001
(
2018
).
14.
S.
Shen
,
Q.
Wang
,
S.
Shen
, and
Q.
Wang
, “
Rational tuning the optical properties of metal sulfide nanocrystals and their applications rational tuning the optical properties of metal sulfide nanocrystals and their applications
,”
Chem. Mater.
25
(
8
),
1166
1178
(
2013
).
15.
J. M.
Jacob
,
P. N. L.
Lens
, and
R.
Mohan
, “
Minireview microbial synthesis of chalcogenide semiconductor nanoparticles: A review
,”
Microb. Biotechnol.
9
(
1
),
11
(
2015
).
16.
D. V.
Talapin
,
J. H.
Nelson
,
E. V.
Shevchenko
,
S.
Aloni
,
B.
Sadtler
, and
A. P.
Alivisatos
, “
Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies
,”
Nano Lett.
7
(
10
),
2951
2959
(
2007
).
17.
L.
Manna
,
E. C.
Scher
,
A. P.
Alivisatos
, and
R. V.
August
, “
Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals
,”
J. Am. Chem. Soc.
122
(
51
),
12700
12706
(
2000
).
18.
X.
Peng
,
L.
Manna
,
W.
Yang
,
J.
Wickham
,
E.
Scher
,
A.
Kadavanich
, and
A. P.
Alivisatos
, “
Shape control of CdSe nanocrystals
,”
Nature
404
,
59
61
(
2000
).
19.
D. J.
Milliron
,
S. M.
Hughes
,
Y.
Cui
,
L.
Manna
,
J.
Li
,
L.-W.
Wang
, and
A.
Paul Alivisatos
, “
Colloidal nanocrystal heterostructures with linear and branched topology
,”
Nature
430
,
190
195
(
2004
).
20.
J.
Joo
,
J. S.
Son
,
S. G.
Kwon
,
J. H.
Yu
, and
T.
Hyeon
, “
Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons
,”
J. Am. Chem. Soc.
128
,
5632
5633
(
2006
).
21.
J. S.
Son
 et al, “
Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets
,”
Angew. Chem., Int. Ed.
48
,
6861
6864
(
2009
).
22.
A.
Riedinger
,
A. S.
Mule
,
P. N.
Knüsel
,
F. D.
Ott
,
A. A.
Rossinelli
, and
D. J.
Norris
, “
Identifying reactive organo-selenium precursors in the synthesis of CdSe nanoplatelets
,”
Chem. Commun.
54
,
11789
11792
(
2018
).
23.
A.
Riedinger
 et al, “
Anintrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets
,”
Nat. Mater.
16
,
743
748
(
2017
).
24.
R. B.
Vasiliev
 et al, “
Spontaneous folding of CdTe nanosheets induced by ligand exchange
,”
Chem. Mater.
30
,
1710
1717
(
2018
).
25.
S.-M.
Lee
,
S.-N.
Cho
, and
J.
Cheon
, “
Anisotropic shape control of colloidal inorganic nanocrystals
,”
Adv. Mater.
15
(
5
),
441
444
(
2003
).
26.
L.
Carbone
 et al, “
Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach
,”
Nano Lett.
7
(
10
),
2942
2950
(
2007
).
27.
S.
Ithurria
,
M. D.
Tessier
,
B.
Mahler
,
R. P. S. M.
Lobo
,
B.
Dubertret
, and
A. L.
Efros
, “
Colloidal nanoplatelets with two-dimensional electronic structure
,”
Nat. Mater.
10
(
12
),
936
941
(
2011
).
28.
J. Q.
Grim
,
S.
Christodoulou
,
F.
Di Stasio
,
R.
Krahne
,
R.
Cingolani
,
L.
Manna
, and
I.
Moreels
, “
Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells
,”
Nat. Nanotechnol.
9
(
11
),
891
895
(
2014
).
29.
J.
Yin
 et al, “
Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures
,”
Nanoscale
5
(
10
),
4436
4442
(
2013
).
30.
R.
Scott
 et al, “
Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure
,”
Nat. Nanotechnol.
12
,
1155
1160
(
2017
).
31.
S. A.
Cherevkov
,
A. V.
Fedorov
,
M. V.
Artemyev
,
A. V.
Prudnikau
, and
A. V.
Baranov
, “
Anisotropy of electron-phonon interaction in nanoscale CdSe platelets as seen via off-resonant and resonant Raman spectroscopy
,”
Phys. Rev. B
88
,
041303
(
2013
).
32.
V.
Dzhagan
 et al, “
Morphology-induced phonon spectra of CdSe/CdS nanoplatelets: Core/shell vs core-crown
,”
Nanoscale
8
,
17204
17212
(
2016
).
33.
E.
Hwang
,
I. I.
Smolyaninov
, and
C. C.
Davis
, “
Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces
,”
Nano Lett.
10
(
3
),
813
820
(
2010
).
34.
M. B.
Cortie
and
A. M.
McDonagh
, “
Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles
,”
Chem. Rev.
111
(
6
),
3713
3735
(
2011
).
35.
L.
Carbone
and
P. D.
Cozzoli
, “
Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms
,”
Nano Today
5
(
5
),
449
493
(
2010
).
36.
R.
Costi
,
A. E.
Saunders
, and
U.
Banin
, “
Colloidal hybrid nanostructures: A new type of functional materials
,”
Angew. Chem., Int. Ed.
49
(
29
),
4878
4897
(
2010
).
37.
K. T.
Shimizu
,
W. K.
Woo
,
B. R.
Fisher
,
H. J.
Eisler
, and
M. G.
Bawendi
, “
Surface-enhanced emission from single semiconductor nanocrystals
,”
Phys. Rev. Lett.
89
(
11
),
117401
(
2002
).
38.
W.
Zhao
 et al, “
Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles
,”
Adv. Mater.
28
(
14
),
2709
2715
(
2016
).
39.
M.
Achermann
, “
Exciton-plasmon interactions in metal-semiconductor nanostructures
,”
J. Phys. Chem. Lett.
1
(
19
),
2837
2843
(
2010
).
40.
L.
Lu
,
D.
Chen
,
F.
Sun
,
X.
Ren
,
Z.
Han
, and
G.
Guo
, “
Photoluminescence quenching and enhancement of CdSe/PMMA composite on Au colloids
,”
Chem. Phys. Lett.
492
(
1–3
),
71
76
(
2010
).
41.
J.-H.
Song
,
T.
Atay
,
S.
Shi
,
H.
Urabe
, and
A. V.
Nurmikko
, “
Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons
,”
Nano Lett.
5
(
8
),
1557
1561
(
2005
).
42.
H.
Chen
,
L.
Shao
,
Q.
Li
, and
J.
Wang
, “
Gold nanorods and their plasmonic properties
,”
Chem. Soc. Rev.
42
(
7
),
2679
2724
(
2013
).
43.
K.
Anikin
,
E.
Rodyakina
,
S.
Veber
,
A.
Milekhin
,
A.
Latyshev
, and
D. R. T.
Zahn
, “
Localized surface plasmon resonance in gold nanocluster arrays on opaque substrates
,”
Plasmonics
14
,
1527
1537
(
2019
).
44.
K.
Munechika
 et al, “
Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms
,”
Nano Lett.
10
(
7
),
2598
2603
(
2010
).
45.
J. R.
Lakowicz
, “
Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission
,”
Anal. Biochem.
337
(
2
),
171
194
(
2005
).
46.
O.
Kulakovich
 et al, “
Enhanced luminescence of CdSe quantum dots on gold colloids
,”
Nano Lett.
2
(
12
),
1449
1452
(
2002
).
47.
X.
Peng
,
M. C.
Schlamp
,
A. V.
Kadavanich
, and
A. P.
Alivisatos
, “
Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility
,”
J. Am. Chem. Soc.
119
(
30
),
7019
7029
(
1997
).
48.
A. R.
Kortan
 et al, “
Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media
,”
J. Am. Chem. Soc.
112
,
1327
1332
(
1990
).
49.
M. A.
Hines
and
P.
Guyot-sionnest
, “
Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals
,”
J. Phys. Chem.
100
,
468
471
(
1996
).
50.
A. G.
Milekhin
 et al, “
Raman scattering for probing semiconductor nanocrystal arrays with a low areal density
,”
J. Phys. Chem. C
116
(
32
),
17164
17168
(
2012
).
51.
Y. B.
Lee
,
S.
Ho Lee
,
S.
Lee
,
H.
Lee
,
J.
Kim
, and
J.
Joo
, “
Surface enhanced Raman scattering effect of CdSe/ZnS quantum dots hybridized with Au nanowire
,”
Appl. Phys. Lett.
102
(
3
),
033109
(
2013
).
52.
F.
Todescato
,
A.
Minotto
,
R.
Signorini
,
J. J.
Jasieniak
, and
R.
Bozio
, “
An Investigation into the heterostructure interface of CdSe-based core-shell quantum dots using surface-enhanced Raman spectroscopy
,”
ACS Nano
7
(
8
),
6649
6657
(
2013
).
53.
A. G.
Milekhin
 et al, “
Surface enhanced Raman scattering by organic and inorganic semiconductors formed on laterally ordered arrays of Au nanoclusters
,”
Thin Solid Films
543
,
35
40
(
2013
).
54.
A. G.
Milekhin
 et al, “
Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir-Blodgett technique
,”
Beilstein J. Nanotechnol.
6
(
1
),
2388
2395
(
2015
).
55.
A. G.
Milekhin
 et al, “
Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays
,”
Appl. Surf. Sci.
370
,
410
417
(
2016
).
56.
D. O.
Sigle
,
J. T.
Hugall
,
S.
Ithurria
,
B.
Dubertret
, and
J. J.
Baumberg
, “
Probing confined phonon modes in individual CdSe nanoplatelets using surface-enhanced Raman scattering
,”
Phys. Rev. Lett.
113
(
8
),
087402
(
2014
).
57.
B. M.
Saidzhonov
,
V. F.
Kozlovsky
,
V. B.
Zaytsev
, and
R. B.
Vasiliev
, “
Ultrathin CdSe/CdS and CdSe/ZnS core-shell nanoplatelets: The impact of the shell material on the structure and optical properties
,”
J. Lumin.
209
,
170
178
(
2019
).
58.
D. A.
Kurtina
,
A. V.
Garshev
,
I. S.
Vasil’eva
,
V. V.
Shubin
,
A. M.
Gaskov
, and
R. B.
Vasiliev
, “
Atomically thin population of colloidal CdSe nanoplatelets: Growth of rolled-up nanosheets and strong circular dichroism induced by ligand exchange
,”
Chem. Mater.
31
,
9652
9663
(
2019
).
59.
A. L.
Stroyuk
,
A. E.
Raevskaya
,
S. Y.
Kuchmiy
,
V. M.
Dzhagan
,
D. R. T.
Zahn
, and
S.
Schulze
, “
Structural and optical characterization of colloidal Se nanoparticles prepared via the acidic decomposition of sodium selenosulfate
,”
Colloids Surf., A
320
(
1-3
),
169
174
(
2008
).
60.
A. E.
Raevskaya
,
A. L.
Stroyuk
,
S. Y.
Kuchmiy
,
V. M.
Dzhagan
,
D. R. T.
Zahn
, and
S.
Schulze
, “
Annealing-induced structural transformation of gelatin-capped Se nanoparticles
,”
Solid State Commun.
145
(
5-6
),
288
292
(
2008
).
61.
F. T.
Thema
,
P.
Beukes
,
A.
Gurib-Fakim
, and
M.
Maaza
, “
Green synthesis of Monteponite CdO nanoparticles by Agathosma betulina natural extract
,”
J. Alloys Compd.
646
,
1043
1048
(
2015
).
62.
A.
Ashrafi
and
K.
Ken Ostrikov
, “
Raman-active wurtzite CdO nanophase and phonon signatures in CdO/ZnO heterostructures fabricated by nonequilibrium laser plasma ablation and stress control
,”
Appl. Phys. Lett.
98
(
13
),
13311
(
2011
).
63.
M.
Li
,
S. K.
Cushing
, and
N.
Wu
, “
Plasmon-enhanced optical sensors: A review
,”
Analyst
140
,
386
406
(
2015
).
64.
J. B.
Khurgin
and
G.
Sun
, “
Enhancement of optical properties of nanoscaled objects by metal nanoparticles
,”
J. Opt. Soc. Am. B
26
(
12
),
B83
B95
(
2009
).
65.
C.
Langhammer
,
B.
Kasemo
, and
I.
Zorić
, “
Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios
,”
J. Chem. Phys.
126
,
194702
(
2007
).
66.
E. M.
Purcell
, “
Spontaneous emission probabilities at radio frequencies
,”
Phys. Rev.
69
,
681
(
1946
).
67.
D.
Canneson
 et al, “
Strong Purcell effect observed in single thick-shell CdSe/CdS nanocrystals coupled to localized surface plasmons
,”
Phys. Rev. B
84
(
24
),
245423
(
2011
).
68.
S.
Adachi
,
Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information
(
Kluwer Academic
,
Boston
,
1999
).
You do not currently have access to this content.