Electron transfer in electrocatalysis involves strong short-range electronic interactions and occurs in an electrochemical double layer. Describing the two elements on an equal footing is an essential but challenging task for theoretical electrocatalysis. This work addresses this challenge using a mixed quantum–classical treatment. This treatment features the combination of chemisorption theory, electron transfer theory, and double layer theory in a unifying framework. Electrostatic free energy terms and solvent reorganization energy, key parameters modulating the electron transfer process, are calculated from a three-dimensional continuum double layer model that considers the reactant structure, steric effect, and solvent orientational polarization. The presented model is reduced back to the Marcus theory by neglecting electronic interactions and to the Schmickler theory of electrocatalysis by neglecting double layer effects. Emphasis is placed on understanding the multifaceted double layer effects in electrocatalysis. Apart from modifying the driving force and reactant concentration that are considered in the Frumkin corrections, double layer effects also modulate the interfacial solvent reorganization energy, thus adding a new term to the transfer coefficient. An additional level of intricacy comes into play if the reactant zone needs to replace solvent molecules originally adsorbed on the metal surface when it approaches the metal surface. The resulting free energy penalty shifts the transition state away from the metal surface and thus increases the activation barrier. Understanding how the metal surface charging condition modulates the interfacial stiffness opens an additional channel of deciphering electrolyte effects in electrocatalysis.

1.
M. J.
Eslamibidgoli
and
M. H.
Eikerling
,
Curr. Opin. Electrochem.
9
,
189
197
(
2018
).
2.
C. F.
Schœnbein
,
London, Edinburgh, Dublin Philos. Mag. J. Sci.
12
(
74
),
225
229
(
1838
).
3.
M.
Eikerling
and
A.
Kulikovsky
,
Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation
(
CRC Press
,
2014
).
4.
J.
Huang
,
Z.
Li
, and
J.
Zhang
,
Front. Energy
11
(
3
),
334
364
(
2017
).
5.
O. M.
Magnussen
and
A.
Groß
,
J. Am. Chem. Soc.
141
(
12
),
4777
4790
(
2019
).
6.
J.
Huang
and
Y.
Chen
,
Curr. Opin. Electrochem.
14
,
A4
A9
(
2019
).
7.
W.
Schmickler
,
J. Electroanal. Chem. Interfacial Electrochem.
204
(
1
),
31
43
(
1986
).
8.
P. W.
Anderson
,
Phys. Rev.
124
(
1
),
41
53
(
1961
).
9.
D. M.
Newns
,
Phys. Rev.
178
(
3
),
1123
1135
(
1969
).
10.
R. A.
Marcus
,
J. Chem. Phys.
24
(
5
),
966
978
(
1956
).
11.
R. A.
Marcus
,
Rev. Mod. Phys.
65
(
3
),
599
610
(
1993
).
12.
A. A.
Kornyshev
,
A. M.
Kuznetsov
,
J. U.
Nielsen
, and
J.
Ulstrup
,
Phys. Chem. Chem. Phys.
2
(
1
),
141
144
(
2000
).
13.
A. A.
Kornyshev
,
A. M.
Kuznetsov
, and
J.
Ulstrup
,
J. Phys. Chem.
98
(
14
),
3832
3837
(
1994
).
14.
J. P.
Badiali
,
M. L.
Rosinberg
,
F.
Vericat
, and
L.
Blum
,
J. Electroanal. Chem. Interfacial Electrochem.
158
(
2
),
253
267
(
1983
).
15.
W.
Schmickler
,
J. Electroanal. Chem. Interfacial Electrochem.
150
(
1
),
19
24
(
1983
).
16.
A. A.
Kornyshev
,
Electrochim. Acta
34
(
12
),
1829
1847
(
1989
).
17.
W.
Schmickler
,
Chem. Rev.
96
(
8
),
3177
3200
(
1996
).
18.
R. R.
Dogonadze
,
A. M.
Kuznetsov
, and
T. A.
Marsagishvili
,
Electrochim. Acta
25
(
1
),
1
28
(
1980
).
19.
A. M.
Kuznetsov
,
Charge Transfer in Physics, Chemistry and Biology
(
Gordon & Breach
,
Reading
,
1995
).
20.
A. M.
Kuznetsov
and
J.
Ulstrup
,
Electrochim. Acta
45
(
15
),
2339
2361
(
2000
).
21.
A. M.
Kuznetsov
and
J.
Ulstrup
,
Electron Transfer in Chemistry and Biology: An Introduction to the Theory
(
John Wiley & Sons Ltd.
,
1999
).
22.
B.
Hammer
and
J. K.
Nørskov
,
Surf. Sci.
343
(
3
),
211
220
(
1995
).
23.
W.
Schmickler
, in
Electrochemical Science for a Sustainable Society: A Tribute to John O’M Bockris
, edited by
K.
Uosaki
(
Springer International Publishing
,
Cham
,
2017
), pp.
95
111
.
24.
C.
Lin
,
E.
Laborda
,
C.
Batchelor-McAuley
, and
R. G.
Compton
,
Phys. Chem. Chem. Phys.
18
(
14
),
9829
9837
(
2016
).
25.
Y.-C.
Lam
,
A. V.
Soudackov
,
Z. K.
Goldsmith
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. C
123
(
19
),
12335
12345
(
2019
).
26.
J.
Huang
and
S.
Chen
,
J. Phys. Chem. C
122
(
47
),
26910
26921
(
2018
).
27.
J.
Huang
,
P.
Li
, and
S.
Chen
,
J. Phys. Chem. C
123
(
28
),
17325
17334
(
2019
).
28.
I.
Ledezma-Yanez
,
W. D. Z.
Wallace
,
P.
Sebastián-Pascual
,
V.
Climent
,
J. M.
Feliu
, and
M. T. M.
Koper
,
Nat. Energy
2
,
17031
(
2017
).
29.
P. P.
Lopes
,
D.
Strmcnik
,
J. S.
Jirkovsky
,
J. G.
Connell
,
V.
Stamenkovic
, and
N.
Markovic
,
Catal. Today
262
,
41
47
(
2016
).
30.
S.
Zhu
,
X.
Hu
,
L.
Zhang
, and
M.
Shao
,
J. Phys. Chem. C
120
(
48
),
27452
27461
(
2016
).
31.
Y. Y.
Birdja
,
E.
Pérez-Gallent
,
M. C.
Figueiredo
,
A. J.
Göttle
,
F.
Calle-Vallejo
, and
M. T. M.
Koper
,
Nat. Energy
4
(
9
),
732
745
(
2019
).
32.
S.
Ringe
,
E. L.
Clark
,
J.
Resasco
,
A.
Walton
,
B.
Seger
,
A. T.
Bell
, and
K.
Chan
,
Energy Environ. Sci.
12
,
3001
(
2019
).
33.
J. P.
Muscat
and
D. M.
Newns
,
Prog. Surf. Sci.
9
(
1
),
1
43
(
1978
).
34.
A. M.
Kuznetsov
,
J. Electroanal. Chem. Interfacial Electrochem.
159
(
2
),
241
255
(
1983
).
35.
R. A.
Marcus
,
J. Chem. Phys.
24
(
5
),
979
989
(
1956
).
36.
R. A.
Marcus
,
J. Chem. Phys.
43
(
2
),
679
701
(
1965
).
37.
M. V.
Basilevsky
and
G. E.
Chudinov
,
Chem. Phys.
157
(
3
),
345
363
(
1991
).
38.
M. V.
Basilevsky
,
G. E.
Chudinov
, and
M. D.
Newton
,
Chem. Phys.
179
(
3
),
263
278
(
1994
).
39.
R. R.
Dogonadze
and
A. M.
Kuznetsov
,
Prog. Surf. Sci.
6
(
1
),
1
41
(
1975
).
40.
E.
Santos
and
W.
Schmickler
,
ChemPhysChem
7
(
11
),
2282
2285
(
2006
).
41.
E.
Santos
and
W.
Schmickler
,
Chem. Phys.
332
(
1
),
39
47
(
2007
).
42.
W.
Schmickler
,
J. Electroanal. Chem. Interfacial Electrochem.
100
(
1
),
533
546
(
1979
).
43.
N. S.
Hush
,
J. Electroanal. Chem.
460
(
1
),
5
29
(
1999
).
44.
N. S.
Hush
,
Trans. Faraday Soc.
57
(
0
),
557
580
(
1961
).
45.
R. R.
Dogonadze
,
A. M.
Kuznetsov
, and
M. A.
Vorotyntsev
,
J. Electroanal. Chem. Interfacial Electrochem.
25
(
2
),
A17
A19
(
1970
).
46.
W.
Schmickler
,
Chem. Phys. Lett.
237
(
1
),
152
160
(
1995
).
47.
W.
Schmickler
,
Electrochim. Acta
41
(
14
),
2329
2338
(
1996
).
48.
W.
Schmickler
,
Chem. Phys. Lett.
317
(
3
),
458
463
(
2000
).
49.
M. D.
Bronshtein
,
R. R.
Nazmutdinov
, and
W.
Schmickler
,
Chem. Phys. Lett.
399
(
4
),
307
314
(
2004
).
50.
J.
Grimminger
,
S.
Bartenschlager
, and
W.
Schmickler
,
Chem. Phys. Lett.
416
(
4
),
316
320
(
2005
).
51.
R. R.
Nazmutdinov
,
W.
Schmickler
, and
A. M.
Kuznetsov
,
Chem. Phys.
310
(
1
),
257
268
(
2005
).
52.
E.
Santos
,
M. T. M.
Koper
, and
W.
Schmickler
,
Chem. Phys. Lett.
419
(
4
),
421
425
(
2006
).
53.
J.
Grimminger
and
W.
Schmickler
,
Chem. Phys.
334
(
1
),
8
17
(
2007
).
54.
E.
Santos
,
M. T. M.
Koper
, and
W.
Schmickler
,
Chem. Phys.
344
(
1
),
195
201
(
2008
).
55.
E.
Santos
,
A.
Lundin
,
K.
Pötting
,
P.
Quaino
, and
W.
Schmickler
,
Phys. Rev. B
79
(
23
),
235436
(
2009
).
56.
E.
Santos
,
P.
Hindelang
,
P.
Quaino
, and
W.
Schmickler
,
Phys. Chem. Chem. Phys.
13
(
15
),
6992
7000
(
2011
).
57.
P.
Quaino
,
N. B.
Luque
,
R.
Nazmutdinov
,
E.
Santos
, and
W.
Schmickler
,
Angew. Chem., Int. Ed.
51
(
52
),
12997
13000
(
2012
).
58.
E.
Santos
,
P.
Quaino
, and
W.
Schmickler
,
Phys. Chem. Chem. Phys.
14
(
32
),
11224
11233
(
2012
).
59.
L. M. C.
Pinto
,
E.
Spohr
,
P.
Quaino
,
E.
Santos
, and
W.
Schmickler
,
Angew. Chem., Int. Ed.
52
(
30
),
7883
7885
(
2013
).
60.
L. M. C.
Pinto
,
P.
Quaino
,
E.
Santos
, and
W.
Schmickler
,
ChemPhysChem
15
(
1
),
132
138
(
2014
).
61.
A.
Ignaczak
,
R.
Nazmutdinov
,
A.
Goduljan
,
L. M.
de Campos Pinto
,
F.
Juarez
,
P.
Quaino
,
E.
Santos
, and
W.
Schmickler
,
Nano Energy
29
,
362
368
(
2016
).
62.
R. R.
Nazmutdinov
,
I. R.
Manyurov
, and
W.
Schmickler
,
Chem. Phys. Lett.
429
(
4
),
457
463
(
2006
).
63.
R. R.
Nazmutdinov
,
E.
Santos
, and
W.
Schmickler
,
Electrochem. Commun.
33
,
14
17
(
2013
).
64.
R. R.
Nazmutdinov
,
T. T.
Zinkicheva
,
G. A.
Tsirlina
, and
Z. V.
Kuz’minova
,
Electrochim. Acta
50
(
25
),
4888
4896
(
2005
).
65.
I. G.
Medvedev
,
Eur. Phys. J. B
17
(
2
),
189
200
(
2000
).
66.
A. M.
Kuznetsov
and
I. G.
Medvedev
,
J. Electroanal. Chem.
502
(
1
),
15
35
(
2001
).
67.
A. M.
Kuznetsov
and
I. G.
Medvedev
,
Russ. J. Electrochem.
37
(
4
),
341
352
(
2001
).
68.
A. M.
Kuznetsov
,
I. G.
Medvedev
, and
V. V.
Sokolov
,
J. Electroanal. Chem.
552
,
231
246
(
2003
).
69.
I. G.
Medvedev
,
Russ. J. Electrochem.
39
(
1
),
44
53
(
2003
).
70.
I. G.
Medvedev
,
Russ. J. Electrochem.
40
(
6
),
604
611
(
2004
).
71.
I. G.
Medvedev
,
J. Electroanal. Chem.
598
(
1
),
1
14
(
2006
).
72.
A. M.
Kuznetsov
and
I. G.
Medvedev
,
Electrochem. Commun.
9
(
6
),
1343
1347
(
2007
).
73.
A. M.
Kuznetsov
and
I. G.
Medvedev
,
Electrochem. Commun.
10
(
8
),
1191
1194
(
2008
).
74.
I. G.
Medvedev
,
J. Chem. Phys.
147
(
19
),
194108
(
2017
).
75.
I. G.
Medvedev
,
Solid State Commun.
96
(
10
),
779
783
(
1995
).
76.
K. L.
Sebastian
,
J. Chem. Phys.
90
(
9
),
5056
5067
(
1989
).
77.
K. L.
Sebastian
and
P.
Ananthapadmanabhan
,
J. Electroanal. Chem. Interfacial Electrochem.
230
(
1
),
43
59
(
1987
).
78.
A. K.
Mishra
and
D. H.
Waldeck
,
J. Phys. Chem. C
113
(
41
),
17904
17914
(
2009
).
79.
Y. G.
Boroda
and
G. A.
Voth
,
J. Chem. Phys.
104
(
16
),
6168
6183
(
1996
).
80.
Y. G.
Boroda
and
G. A.
Voth
,
J. Electroanal. Chem.
450
(
1
),
95
107
(
1998
).
81.
A.
Calhoun
,
M. T. M.
Koper
, and
G. A.
Voth
,
J. Phys. Chem. B
103
(
17
),
3442
3448
(
1999
).
82.
A.
Calhoun
and
G. A.
Voth
,
J. Phys. Chem.
100
(
25
),
10746
10753
(
1996
).
83.
J. B.
Straus
,
A.
Calhoun
, and
G. A.
Voth
,
J. Chem. Phys.
102
(
1
),
529
539
(
1995
).
84.
M. T. M.
Koper
and
G. A.
Voth
,
Chem. Phys. Lett.
282
(
1
),
100
106
(
1998
).
85.
T.
Van Voorhis
,
T.
Kowalczyk
,
B.
Kaduk
,
L.-P.
Wang
,
C.-L.
Cheng
, and
Q.
Wu
,
Annu. Rev. Phys. Chem.
61
(
1
),
149
170
(
2010
).
86.
R. I.
Cukier
,
J. Phys. Chem.
98
(
9
),
2377
2381
(
1994
).
87.
R. I.
Cukier
,
J. Phys. Chem.
100
(
38
),
15428
15443
(
1996
).
88.
R. I.
Cukier
and
D. G.
Nocera
,
Annu. Rev. Phys. Chem.
49
(
1
),
337
369
(
1998
).
89.
A.
Soudackov
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
111
(
10
),
4672
4687
(
1999
).
90.
S.
Hammes-Schiffer
,
Acc. Chem. Res.
34
(
4
),
273
281
(
2001
).
91.
A. A.
Kornyshev
and
A. M.
Kuznetsov
,
J. Mol. Liq.
61
(
1
),
103
114
(
1994
).
92.
E.
Gongadze
and
A.
Iglič
,
Bioelectrochemistry
87
,
199
203
(
2012
).
93.
J.
Huang
,
P.
Li
, and
S.
Chen
,
Phys. Rev. B
101
(
12
),
125422
(
2020
).
94.
A. A.
Kornyshev
,
J. Phys. Chem. B
111
(
20
),
5545
5557
(
2007
).
95.
D. K.
Phelps
,
A. A.
Kornyshev
, and
M. J.
Weaver
,
J. Phys. Chem.
94
(
4
),
1454
1463
(
1990
).
96.
Y. A.
Budkov
,
J. Phys.: Condens. Matter
30
(
34
),
344001
(
2018
).
97.
A. A.
Kornyshev
and
M. A.
Vorotyntsev
,
Surf. Sci.
101
(
1
),
23
48
(
1980
).
98.
A. A.
Kornyshev
and
W.
Schmickler
,
J. Electroanal. Chem. Interfacial Electrochem.
202
(
1
),
1
21
(
1986
).
99.
A. M.
Limaye
,
W.
Ding
, and
A. P.
Willard
,
J. Chem. Phys.
152
(
11
),
114706
(
2020
).
100.
M. K.
Petersen
,
R.
Kumar
,
H. S.
White
, and
G. A.
Voth
,
J. Phys. Chem. C
116
(
7
),
4903
4912
(
2012
).
101.
S. K.
Reed
,
P. A.
Madden
, and
A.
Papadopoulos
,
J. Chem. Phys.
128
(
12
),
124701
(
2008
).
102.
S.
Ghosh
,
S.
Horvath
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Chem. Theory Comput.
10
(
5
),
2091
2102
(
2014
).
103.
R. E.
Bangle
,
J.
Schneider
,
E. J.
Piechota
,
L.
Troian-Gautier
, and
G. J.
Meyer
,
J. Am. Chem. Soc.
142
(
2
),
674
679
(
2020
).
104.
A.
Frumkin
,
Z. Phys. Chem. A
164
,
121
(
1933
).
105.
G. A.
Tsirlina
,
O. A.
Petrii
,
R. R.
Nazmutdinov
, and
D. V.
Glukhov
,
Russ. J. Electrochem.
38
(
2
),
132
140
(
2002
).
106.
R.
Memming
,
Semiconductor Electrochemistry
(
John Wiley & Sons
,
2015
).
107.
J.
Lipkowski
,
Z.
Shi
,
A.
Chen
,
B.
Pettinger
, and
C.
Bilger
,
Electrochim. Acta
43
(
19
),
2875
2888
(
1998
).
108.
A.
Azhar
,
T.
Manyepedza
,
A. V.
Oladeji
,
R.
Hendi
, and
N. V.
Rees
,
J. Electroanal. Chem.
872
,
113989
(
2020
).
109.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1999
), p.
808
.
You do not currently have access to this content.