Computer simulations can provide mechanistic insight into ionic liquids (ILs) and predict the properties of experimentally unrealized ion combinations. However, ILs suffer from a particularly large disparity in the time scales of atomistic and ensemble motion. Coarse-grained models are therefore used in place of costly all-atom simulations, accessing longer time scales and larger systems. Nevertheless, constructing the many-body potential of mean force that defines the structure and dynamics of a coarse-grained system can be complicated and computationally intensive. Machine learning shows great promise for the linked challenges of dimensionality reduction and learning the potential of mean force. To improve the coarse-graining of ILs, we present a neural network model trained on all-atom classical molecular dynamics simulations. The potential of mean force is expressed as two jointly trained neural network interatomic potentials that learn the coupled short-range and many-body long range molecular interactions. These interatomic potentials treat temperature as an explicit input variable to capture its influence on the potential of mean force. The model reproduces structural quantities with high fidelity, outperforms the temperature-independent baseline at capturing dynamics, generalizes to unseen temperatures, and incurs low simulation cost.

1.
J.
Dupont
,
R. F.
De Souza
,
A.
Paulo
, and
Z.
Suarez
, “
Ionic liquid (molten salt) phase organometallic catalysis
,”
Chem. Rev.
102
(
10
),
3667
3692
(
2002
).
2.
M. C.
Lin
,
M.
Gong
,
B.
Lu
,
Y.
Wu
,
D. Y.
Wang
,
M.
Guan
,
M.
Angell
,
C.
Chen
,
Y.
Jiang
,
B. J.
Hwang
, and
H.
Dai
, “
An ultrafast rechargeable aluminium-ion battery
,”
Nature
520
(
7547
),
325
328
(
2015
).
3.
J. N.
Canongia Lopes
and
A. A. H.
Pádua
, “
Molecular force field for ionic liquids III: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions
,”
J. Phys. Chem. B
110
(
39
),
19586
19592
(
2006
).
4.
J. N.
Canongia Lopes
,
J.
Deschamps
,
A.
Agílio
, and
H.
Pádua
, “
Modeling ionic liquids using a systematic all-atom force field
,”
J. Phys. Chem. B
108
(
6
),
2038
2047
(
2004
).
5.
T. L.
Greaves
and
C. J.
Drummond
, “
Solvent nanostructure, the solvophobic effect and amphiphile self-assembly in ionic liquids
,”
Chem. Soc. Rev.
42
,
1096
(
2013
).
6.
E. I.
Izgorodina
,
D.
Golze
,
R.
Maganti
,
V.
Armel
,
M.
Taige
,
J.
Thomas
,
S.
Schubert
, and
D. R.
Macfarlane
, “
Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids
,”
Phys. Chem. Chem. Phys.
16
(
16
),
7209
7221
(
2014
).
7.
K.
Fumino
and
R.
Ludwig
, “
Analyzing the interaction energies between cation and anion in ionic liquids: The subtle balance between Coulomb forces and hydrogen bonding
,”
J. Mol. Liq.
192
,
94
102
(
2014
).
8.
T.
Mukai
and
K.
Nishikawa
, “
4,5-dihaloimidazolium-based ionic liquids: Effects of halogen-bonding on crystal structures and ionic conductivity
,”
RSC Adv.
3
(
43
),
19952
19955
(
2013
).
9.
K.
Hemant
and
R.
Biswas
, “
Solvation dynamics of dipolar probes in dipolar room temperature ionic liquids: Separation of ion–dipole and dipole–dipole interaction contributions
,”
J. Phys. Chem. B
114
(
1
),
254
268
(
2010
).
10.
S.
Izvekov
and
G. A.
Voth
, “
A multiscale coarse-graining method for biomolecular systems
,”
J. Phys. Chem. B
109
(
7
),
2469
2473
(
2005
).
11.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
, “
The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models
,”
J. Chem. Phys.
128
(
24
),
244114
(
2008
).
12.
W. G.
Noid
, “
Perspective: Coarse-grained models for biomolecular systems
,”
J. Chem. Phys.
139
(
9
),
090901
(
2013
).
13.
L.-J.
Chen
,
H.-J.
Qian
,
Z.-Y.
Lu
,
Z.-S.
Li
, and
C.-C.
Sun
, “
An automatic coarse-graining and fine-graining simulation method: Application on polyethylene
,”
J. Phys. Chem. B
110
(
47
),
24093
24100
(
2006
).
14.
L. E.
Lombardi
,
M. A.
Martí
, and
L.
Capece
, “
CG2AA: Backmapping protein coarse-grained structures
,”
Bioinformatics
32
(
8
),
1235
1237
(
2016
).
15.
W.
Wang
and
R.
Gómez-Bombarelli
, “
Coarse-graining auto-encoders for molecular dynamics
,”
npj Comput. Mater.
5
(
1
),
125
(
2019
).
16.
M. H.
Kowsari
,
S.
Alavi
,
M.
Ashrafizaadeh
, and
B.
Najafi
, “
Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient
,”
J. Chem. Phys.
129
(
22
),
224508
(
2008
).
17.
T.
Umecky
,
M.
Kanakubo
, and
Y.
Ikushima
, “
Self-diffusion coefficients of 1-butyl-3-methylimidazolium hexafluorophosphate with pulsed-field gradient spin-echo NMR technique
,”
Fluid Phase Equilib.
228-229
,
329
333
(
2005
).
18.
J.
Sangoro
,
C.
Iacob
,
A.
Serghei
,
S.
Naumov
,
P.
Galvosas
,
J.
Kärger
,
C.
Wespe
,
F.
Bordusa
,
A.
Stoppa
,
J.
Hunger
,
R.
Buchner
, and
F.
Kremer
, “
Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid
,”
J. Chem. Phys.
128
(
21
),
214509
(
2008
).
19.
D.
Roy
,
N.
Patel
,
S.
Conte
, and
M.
Maroncelli
, “
Dynamics in an idealized ionic liquid model
,”
J. Phys. Chem. B
114
(
25
),
8410
8424
(
2010
).
20.
Y.
Wang
,
S.
Feng
, and
G. A.
Voth
, “
Transferable coarse-grained models for ionic liquids
,”
J. Chem. Theory Comput.
5
(
4
),
1091
1098
(
2009
).
21.
C.
Merlet
,
M.
Salanne
, and
B.
Rotenberg
, “
New coarse-grained models of imidazolium ionic liquids for bulk and interfacial molecular simulations
,”
J. Phys. Chem. C
116
(
14
),
7687
7693
(
2012
).
22.
Y.-L.
Wang
,
A.
Lyubartsev
,
Z.-Y.
Lu
, and
A.
Laaksonen
, “
Multiscale coarse-grained simulations of ionic liquids: Comparison of three approaches to derive effective potentials
,”
Phys. Chem. Chem. Phys.
15
(
20
),
7701
7712
(
2013
).
23.
W.
Xia
,
J.
Song
,
C.
Jeong
,
D. D.
Hsu
,
F. R.
Phelan
,
J. F.
Douglas
, and
S.
Keten
, “
Energy-renormalization for achieving temperature transferable coarse-graining of polymer dynamics
,”
Macromolecules
50
(
21
),
8787
8796
(
2017
).
24.
R.
Gómez-Bombarelli
,
J. N.
Wei
,
D.
Duvenaud
,
J. M.
Hernández-Lobato
,
B.
Sánchez-Lengeling
,
D.
Sheberla
,
J.
Aguilera-Iparraguirre
,
T. D.
Hirzel
,
R. P.
Adams
, and
A.
Aspuru-Guzik
, “
Automatic chemical design using a data-driven continuous representation of molecules
,”
ACS Cent. Sci.
4
(
2
),
268
276
(
2018
).
25.
F.
Nüske
,
L.
Boninsegna
, and
C.
Clementi
, “
Coarse-graining molecular systems by spectral matching
,”
J. Chem. Phys.
151
(
4
),
044116
(
2019
).
26.
J.
Wang
,
S.
Olsson
,
C.
Wehmeyer
,
A.
Pérez
,
N. E.
Charron
,
G.
De Fabritiis
,
F.
Noé
, and
C.
Clementi
, “
Machine learning of coarse-grained molecular dynamics force fields
,”
ACS Cent. Sci.
5
(
5
),
755
767
(
2019
).
27.
J.
Wang
,
S.
Chmiela
,
K.-R.
Müller
,
F.
Noé
, and
C.
Clementi
, “
Ensemble learning of coarse-grained molecular dynamics force fields with a kernel approach
,”
J. Chem. Phys.
152
(
19
),
194106
(
2020
).
28.
E.
Jang
,
S.
Gu
, and
B.
Poole
, “
Categorical reparameterization with Gumbel-softmax
,” arXiv:1611.01144 (
2016
).
29.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet—A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
(
24
),
241722
(
2018
).
30.
J.
Gilmer
,
S. S.
Schoenholz
,
P. F.
Riley
,
O.
Vinyals
, and
G. E.
Dahl
, “
Neural message passing for quantum chemistry
,” arXiv:1704.01212 (
2017
).
31.
E.
Kalligiannaki
,
V.
Harmandaris
,
M. A.
Katsoulakis
, and
P.
Plecháč
, “
The geometry of generalized force matching and related information metrics in coarse-graining of molecular systems
,”
J. Chem. Phys.
143
(
8
),
084105
(
2015
).
32.
E.
Darve
, “
Numerical methods for calculating the potential of mean force
,” in
New Algorithms for Macromolecular Simulation
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
213
249
.
33.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
34.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
(
13
),
2157
2164
(
2009
).
35.
W.
Wang
,
A.
Simon
, and
R.
Gómez-Bombarelli
, “
Differentiable molecular simulations for control and learning
,” arXiv:2003.00868 (
2020
).
36.
A.
Moradzadeh
,
M. H.
Motevaselian
,
S. Y.
Mashayak
, and
N. R.
Aluru
, “
Coarse-grained force field for imidazolium-based ionic liquids
,”
J. Chem. Theory Comput.
14
(
6
),
3252
3261
(
2018
).

Supplementary Material

You do not currently have access to this content.