We theoretically study the exciton–exciton annihilation (EEA) in a molecular trimer MMM. The system is treated within a model of electronic states, and the coupling to a bath is incorporated using the quantum jump method. Two situations of initial excitation are compared. In the first one, a two-photon process populates configurations M*M*M and MM*M* so that two excitons reside on neighboring monomers M. Then, EEA can immediately proceed. In contrast, if the trimer initially is in the local configuration M*MM*, exciton diffusion must occur before the annihilation process can take place. For the trimer, this excitonic motion takes place on a very short time scale. In both cases, wave packets are prepared which show a different quantum dynamics where the latter depends on the couplings and decay rates. It is documented how fifth-order coherent two-dimensional spectroscopy can be used to directly map the EEA as a function of time.

1.
R. S.
Knox
,
Theory of Excitons
, Solid State Physics: Advances in Research and Applications Vol. 5 (
Academic Press
,
New York
,
1963
).
2.
A. S.
Davydov
,
Theory of Molecular Excitons
(
Plenum
,
New York
,
1971
).
3.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley-VCH
,
Weinheim
,
2011
).
4.
The Physics and Chemistry of Wave Packets
, edited by
J.
Yeazell
and
T.
Uzer
(
Wiley
,
New York
,
2000
).
5.
7.
J.
Süß
and
V.
Engel
,
J. Chem. Phys.
152
,
174305
(
2020
).
8.
Y.
Zaushitsyn
,
K. G.
Jespersen
,
L.
Valkunas
,
V.
Sundström
, and
A.
Yartsev
,
Phys. Rev. B
75
,
195201
(
2007
).
9.
D. C.
Dai
and
A. P.
Monkman
,
Phys. Rev. B
87
,
045308
(
2013
).
10.
M. A.
Stevens
,
C.
Silva
,
D. M.
Russell
, and
R. H.
Friend
,
Phys. Rev. B
63
,
165213
(
2001
).
11.
S.
Cook
,
H.
Liyuan
,
A.
Furube
, and
R.
Katoh
,
J. Phys. Chem. C
114
,
10962
(
2010
).
12.
A. J.
Lewis
,
A.
Ruseckas
,
O. P. M.
Gaudin
,
G. R.
Webster
,
P. L.
Burn
, and
I. D. W.
Samuel
,
Org. Electron.
7
,
452
(
2006
).
13.
D.
Peckus
,
A.
Devižis
,
D.
Hertel
,
K.
Meerholz
, and
V.
Gulbinas
,
Chem. Phys.
404
,
42
(
2012
).
14.
S.
Gòlinas
,
J.
Kirkpatrick
,
I. A.
Howard
,
K.
Johnson
,
M. W. B.
Wilson
,
G.
Pace
,
R. H.
Friend
, and
C.
Silva
,
J. Phys. Chem. B
117
,
4649
(
2013
).
15.
16.
R. L.
Fulton
and
M.
Gouterman
,
J. Chem. Phys.
35
,
1059
(
1961
).
17.
M.
Schröter
,
S. D.
Ivanov
,
J.
Schulze
,
S. P.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
,
Phys. Rep.
567
,
1
(
2015
).
18.
B.
Engels
and
V.
Engel
,
Phys. Chem. Chem. Phys.
19
,
12604
(
2017
).
19.
H.
Marciniak
,
X.-Q.
Li
,
F.
Würthner
, and
S.
Lochbrunner
,
J. Phys. Chem. A
115
,
648
(
2011
).
20.
S.
Wolter
,
J.
Aizezers
,
F.
Fennel
,
M.
Seidel
,
F.
Würthner
,
O.
Kühn
, and
S.
Lochbrunner
,
New J. Phys.
14
,
105027
(
2012
).
21.
F.
Fennel
and
S.
Lochbrunner
,
Phys. Rev. B
92
,
140301
(
2015
).
22.
S. F.
Völker
,
A.
Schmiedel
,
M.
Holzapfel
,
K.
Renziehausen
,
V.
Engel
, and
C.
Lambert
,
J. Phys. Chem. C
118
,
17467
(
2014
).
23.
K.
Hader
,
V.
May
,
C.
Lambert
, and
V.
Engel
,
Phys. Chem. Chem. Phys.
18
,
13368
(
2016
).
24.
K.
Hader
,
C.
Consani
,
T.
Brixner
, and
V.
Engel
,
Phys. Chem. Chem. Phys.
19
,
31989
(
2017
).
25.
J.
Dostál
,
F.
Fennel
,
F.
Koch
,
S.
Herbst
,
F.
Würthner
, and
T.
Brixner
,
Nat. Commun.
9
,
2466
(
2018
).
26.
P.
Malý
,
J.
Lüttig
,
A.
Turkin
,
J.
Dostál
,
C.
Lambert
, and
T.
Brixner
,
Chem. Sci.
11
,
456
(
2020
).
28.
F. D.
Fuller
and
J. P.
Ogilvie
,
Annu. Rev. Phys. Chem.
66
,
667
(
2015
).
29.
P.
Nuernberger
,
S.
Ruetzel
, and
T.
Brixner
,
Angew. Chem., Int. Ed.
54
,
11368
(
2015
).
30.
B.
Brueggemann
and
T.
Pullerits
,
New J. Phys.
13
,
025024
(
2011
).
31.
J.
Süß
,
J.
Wehner
,
J.
Dostál
,
T.
Brixner
, and
V.
Engel
,
J. Chem. Phys.
150
,
104304
(
2019
).
32.
T.
Renger
and
V.
May
,
Phys. Rev. Lett.
78
,
3406
(
1997
).
33.
B.
Brüggemann
,
J. L.
Herek
,
V.
Sundström
,
T.
Pullerits
, and
V.
May
,
J. Phys. Chem. B
105
,
11391
(
2001
).
34.
K.
Mølmer
,
Y.
Castin
, and
J.
Dalibard
,
J. Opt. Soc. Am. B
10
,
524
(
1993
).
35.
D. E.
Makarov
and
H.
Metiu
,
J. Chem. Phys.
111
,
10126
(
1999
).
36.
B.
Wolfseder
and
W.
Domcke
,
Chem. Phys. Lett.
235
,
370
(
1995
).
37.
38.
J.
Albert
,
M.
Falge
,
M.
Keß
,
J. G.
Wehner
,
P.-P.
Zhang
,
A.
Eisfeld
, and
V.
Engel
,
J. Chem. Phys.
142
,
212440
(
2015
).
39.
M.
Keß
and
V.
Engel
,
Chem. Phys. Lett.
650
,
41
(
2016
).
40.
F.
Glaab
,
J. G.
Wehner
,
C.
Lambert
, and
V.
Engel
,
J. Phys. Chem. A
123
,
5463
(
2019
).
41.
M.
Kasha
,
Discuss. Faraday Soc.
9
,
14
(
1950
).
42.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time-Dependent Perspective
(
University Science Books
,
Sausalito
,
2007
).
43.
P.
Kjellberg
,
B.
Brüggemann
, and
T.
Pullerits
,
Phys. Rev. B
74
,
024303
(
2006
).
44.
You do not currently have access to this content.