Neon cluster ions Nes+ grown in pre-ionized, mass-to-charge selected helium nanodroplets (HNDs) reveal a strong enrichment of the heavy isotope 22Ne that depends on cluster size s and the experimental conditions. For small sizes, the enrichment is much larger than previously reported for bare neon clusters grown in nozzle expansions and subsequently ionized. The enrichment is traced to the massive evaporation of neon atoms in a collision cell that is used to strip helium from the HNDs. We derive a relation between the enrichment of 22Ne in the cluster ion and its corresponding depletion factor F in the vapor phase. The value thus found for F is in excellent agreement with a theoretical expression that relates isotopic fractionation in two-phase equilibria of atomic gases to the Debye temperature. Furthermore, the difference in zero-point energies between the two isotopes computed from F agrees reasonably well with theoretical studies of neon cluster ions that include nuclear quantum effects in the harmonic approximation. Another fitting parameter provides an estimate for the size si of the precursor of the observed Nes+. The value is in satisfactory agreement with the size estimated by modeling the growth of Nes+ and with lower and upper limits deduced from other experimental data. On the other hand, neon clusters grown in neutral HNDs that are subsequently ionized by electron bombardment exhibit no statistically significant isotope enrichment at all. The finding suggests that the extent of ionization-induced dissociation of clusters embedded in HNDs is considerably smaller than that for bare clusters.

1.
E. W.
Becker
,
R.
Klingelhöfer
, and
P.
Lohse
, “
Über die möglichkeit der gerichteten einführung von deuterium und tritium bei kernfusionsexperimenten
,”
Z. Naturforsch., A
15
,
644
645
(
1960
).
2.
E. W.
Becker
,
R.
Klingelhöfer
, and
P.
Lohse
, “
Strahlen aus kondensiertem wasserstoff, kondensiertem helium und kondensiertem stickstoff im hochvakuum
,”
Z. Naturforsch., A
17
,
432
438
(
1962
).
3.
E. W.
Becker
,
K.
Bier
,
W.
Bier
,
R.
Schütte
, and
D.
Seidel
, “
Separation of isotopes of uranium by separation nozzle process
,”
Angew. Chem., Int. Ed.
6
,
507
518
(
1967
);
E. W.
Becker
,
W.
Bier
,
W.
Ehrfeld
,
K.
Schubert
,
R.
Schütte
, and
D.
Seidel
, “
Uranium enrichment by the separation-nozzle process
,”
Naturwissenschaften
63
,
407
411
(
1976
).
4.
B. D.
Kay
and
A. W.
Castleman
, “
Isotope enrichment during the formation of water clusters in supersonic free jet expansions
,”
J. Chem. Phys.
78
,
4297
4302
(
1983
).
5.
P.
Scheier
and
T. D.
Märk
, “
Isotope enrichment in Ne clusters
,”
J. Chem. Phys.
87
,
5238
5241
(
1987
).
6.
R. B.
Firestone
and
V. S.
Shirley
,
Table of Isotopes
, 8th ed. (
John Wiley & Sons, Inc.
,
1996
).
7.
M. J.
DeLuca
,
D. M.
Cyr
,
W. A.
Chupka
, and
M. A.
Johnson
, “
Isotopic fractionation in low temperature ion-molecule exchange reactions: Enrichment of 22Ne in Nen+ clusters formed by association in an ionized free jet
,”
J. Chem. Phys.
92
,
7349
7355
(
1990
).
8.
M.
Fieber
,
G.
Bröker
, and
A.
Ding
, “
The photoionization dynamics of Ne clusters
,”
Z. Phys. D
20
,
21
23
(
1991
).
9.
I.
Mähr
,
F.
Zappa
,
S.
Denifl
,
D.
Kubala
,
O.
Echt
,
T. D.
Märk
, and
P.
Scheier
, “
Multiply charged neon clusters: Failure of the liquid drop model?
,”
Phys. Rev. Lett.
98
,
023401
(
2007
).
10.
M.
Gatchell
,
P.
Martini
,
A.
Schiller
, and
P.
Scheier
, “
Protonated clusters of neon and krypton
,”
J. Am. Soc. Mass Spectrom.
30
,
2632
2636
(
2019
).
11.
M.
Lewerenz
,
B.
Schilling
, and
J. P.
Toennies
, “
Successive capture and coagulation of atoms and molecules to small clusters in large liquid helium clusters
,”
J. Chem. Phys.
102
,
8191
8206
(
1995
).
12.
A.
Boatwright
,
J.
Jeffs
, and
A. J.
Stace
, “
Ion-molecule reactions and fragmentation patterns in helium nanodroplets
,”
J. Phys. Chem. A.
111
,
007481
7488
(
2007
);
Y.
Ren
,
R.
Moro
, and
V. V.
Kresin
, “
Changing the fragmentation pattern of molecules in helium nanodroplets by co-embedding with water
,”
Eur. Phys. J. D
43
,
109
112
(
2007
);
S.
Denifl
,
F.
Zappa
,
I.
Mähr
,
A.
Mauracher
,
M.
Probst
,
J.
Urban
,
P.
Mach
,
A.
Bacher
,
D. K.
Bohme
,
O.
Echt
,
T. D.
Märk
, and
P.
Scheier
, “
Ionization of doped helium nanodroplets: Complexes of C60 with water clusters
,”
J. Chem. Phys.
132
,
234307
(
2010
).
[PubMed]
13.
A.
Mauracher
,
O.
Echt
,
A. M.
Ellis
,
S.
Yang
,
D. K.
Bohme
,
J.
Postler
,
A.
Kaiser
,
S.
Denifl
, and
P.
Scheier
, “
Cold physics and chemistry: Collisions, ionization and reactions inside helium nanodroplets close to zero K
,”
Phys. Rep.
751
,
1
90
(
2018
).
14.
L.
Tiefenthaler
,
J.
Ameixa
,
P.
Martini
,
S.
Albertini
,
L.
Ballauf
,
M.
Zankl
,
M.
Goulart
,
F.
Laimer
,
K.
von Haeften
,
F.
Zappa
, and
P.
Scheier
, “
An intense source for cold cluster ions of a specific composition
,”
Rev. Sci. Instrum.
91
,
033315
(
2020
).
15.
M.
Mahmoodi-Darian
,
P.
Martini
,
L.
Tiefenthaler
,
J.
Kočišek
,
P.
Scheier
, and
O.
Echt
, “
Solvation of silver ions in noble gases He, Ne, Ar, Kr, and Xe
,”
J. Phys. Chem. A
123
,
10426
10436
(
2019
).
16.
F.
Laimer
,
L.
Kranabetter
,
L.
Tiefenthaler
,
S.
Albertini
,
F.
Zappa
,
A. M.
Ellis
,
M.
Gatchell
, and
P.
Scheier
, “
Highly charged droplets of superfluid helium
,”
Phys. Rev. Lett.
123
,
165301
(
2019
).
17.
F.
Calvo
,
F. Y.
Naumkin
, and
D. J.
Wales
, “
Nuclear quantum effects on the stability of cationic neon clusters
,”
Chem. Phys. Lett.
551
,
38
41
(
2012
).
18.
O. F.
Hagena
, “
Nucleation and growth of clusters in expanding nozzle flows
,”
Surf. Sci.
106
,
101
116
(
1981
).
19.
L. F.
Gomez
,
E.
Loginov
,
R.
Sliter
, and
A. F.
Vilesov
, “
Sizes of large He droplets
,”
J. Chem. Phys.
135
,
154201
(
2011
).
20.
H.
Schöbel
,
P.
Bartl
,
C.
Leidlmair
,
S.
Denifl
,
O.
Echt
,
T. D.
Märk
, and
P.
Scheier
, “
High-resolution mass spectrometric study of pure helium droplets, and droplets doped with krypton
,”
Eur. Phys. J. D
63
,
209
214
(
2011
).
21.
S.
Ralser
,
J.
Postler
,
M.
Harnisch
,
A. M.
Ellis
, and
P.
Scheier
, “
Extracting cluster distributions from mass spectra: Isotopefit
,”
Int. J. Mass Spectrom.
379
,
194
199
(
2015
).
22.
T. D.
Märk
and
P.
Scheier
, “
Production and stability of neon cluster ions up to Ne90+
,”
Chem. Phys. Lett.
137
,
245
249
(
1987
);
T. D.
Märk
and
P.
Scheier
, “
Experimental evidence for the time dependence of the metastable decay rate of Ne cluster ions: A further key to the magic number problem
,”
J. Chem. Phys.
87
,
1456
1458
(
1987
).
23.

The conversion from p22 to ϕ is ambiguous unless the measured abundances p20 or p21 are reported as well, which is not always the case. However, the natural abundance of 21Ne (0.0027) is much less than that of 22Ne. Values fitted to data recorded for charged HNDs range from 0 to 0.007; p21 does not seem to increase beyond the statistical scatter. For a consistent conversion between p22 and ϕ, we set p21 = 0. Another ambiguity arises from uncertainties in the natural abundance of 22Ne. Scheier and Märk assumed p22,0 = 0.087, less than the current value of 0.0925.6 This reduces the enrichment factor in Ref. 5 from 1.5 to 1.4.

24.
D. M.
Brink
and
S.
Stringari
, “
Density of states and evaporation rate of helium clusters
,”
Z. Phys. D
15
,
257
263
(
1990
).
25.
M. N.
Magomedov
, “
The surface energy of cryocrystals
,”
Tech. Phys. Lett.
31
,
1039
1042
(
2005
).
26.

This relation has been derived by Lewerenz et al.,11 but their expression for the thermal energy, 3/2 kBT, ignored the speed factor, i.e., the fact that faster atoms collide at a higher rate.

27.
M.
Rosenblit
and
J.
Jortner
, “
Electron bubbles in helium clusters. I. Structure and energetics
,”
J. Chem. Phys.
124
,
194505
(
2006
).
28.
D.
Mateo
and
J.
Eloranta
, “
Solvation of intrinsic positive charge in superfluid helium
,”
J. Phys. Chem. A
118
,
6407
6415
(
2014
).
29.

The adiabatic electron affinity of He3+ equals the electron affinity of He+ (24.59 eV) minus the dissociation energies of He2+ (2.35 eV) and He3+ (0.17 eV).30 

30.
P. L.
Patterson
, “
Evidence of the existence of an He3+ ion
,”
J. Chem. Phys.
48
,
3625
3631
(
1968
).
31.
J.
Mášik
,
J.
Urban
,
P.
Mach
, and
I.
Hubac
, “
Applicability of multireference many-body theory to the Ne2+ molecule
,”
Int. J. Quantum Chem.
63
,
333
343
(
1997
).
32.
J.
Urban
,
P.
Mach
,
J.
Mášik
,
I.
Hubač
, and
V.
Staemmler
, “
Ground and excited states of the Ne3+ molecule
,”
Chem. Phys.
255
,
15
22
(
2000
).
33.
K.
Hiraoka
and
T.
Mori
, “
Stability of rare gas cluster ions
,”
J. Chem. Phys.
92
,
4408
4416
(
1990
);
D.
Bonhommeau
,
M.
Lewerenz
, and
N.
Halberstadt
, “
Fragmentation of ionized doped helium nanodroplets: Theoretical evidence for a dopant ejection mechanism
,”
J. Chem. Phys.
128
,
054302
(
2008
).
[PubMed]
34.
F. Y.
Naumkin
and
D. J.
Wales
, “
Structure and properties of Nen+ clusters from a diatomics-in-molecules approach
,”
Mol. Phys.
93
,
633
648
(
1998
).
35.
M.
Lezius
,
P.
Scheier
,
A.
Stamatovic
, and
T. D.
Märk
, “
Production and properties of singly and multiply charged Kr clusters
,”
J. Chem. Phys.
91
,
3240
3245
(
1989
).
36.
S.
Wei
,
K.
Kilgore
,
W. B.
Tzeng
, and
A. W.
Castleman
, “
Evaporative dissociation of ammonia cluster ions: Quantification of decay fractions and isotope effects
,”
J. Phys. Chem.
95
,
8306
8309
(
1991
).
37.
J.
Fedor
,
R.
Parajuli
,
S.
Matt-Leubner
,
O.
Echt
,
F.
Hagelberg
,
K.
Gluch
,
A.
Stamatovic
,
M.
Probst
,
P.
Scheier
, and
T. D.
Märk
, “
Probing electronic states of Ne2+ and Ar2+ by measuring kinetic energy release distributions
,”
Phys. Rev. Lett.
91
,
133401
(
2003
);
[PubMed]
K.
Gluch
,
J.
Fedor
,
R.
Parajuli
,
O.
Echt
,
S.
Matt-Leubner
,
P.
Scheier
, and
T. D.
Märk
, “
Isotope effects in the metastable decay of Ne2+
,”
Eur. Phys. J. D
43
,
77
80
(
2007
).
38.
N. B.
Brauer
,
S.
Smolarek
,
E.
Loginov
,
D.
Mateo
,
A.
Hernando
,
M.
Pi
,
M.
Barranco
,
W. J.
Buma
, and
M.
Drabbels
, “
Critical Landau velocity in helium nanodroplets
,”
Phys. Rev. Lett.
111
,
153002
(
2013
).
39.
C. E.
Klots
, “
Temperature of evaporating clusters
,”
Nature
327
,
222
223
(
1987
).
40.
S.
Yang
,
S. M.
Brereton
,
M. D.
Wheeler
, and
A. M.
Ellis
, “
Soft or hard ionization of molecules in helium nanodroplets? An electron impact investigation of alcohols and ethers
,”
Phys. Chem. Chem. Phys.
7
,
4082
4088
(
2005
);
[PubMed]
S.
Yang
,
S. M.
Brereton
,
M. D.
Wheeler
, and
A. M.
Ellis
, “
Electron impact ionization of haloalkanes in helium nanodroplets
,”
J. Phys. Chem. A
110
,
1791
1797
(
2006
);
[PubMed]
A.
Braun
and
M.
Drabbels
, “
Imaging the translational dynamics of CF3 in liquid helium droplets
,”
Phys. Rev. Lett.
93
,
253401
(
2004
).
[PubMed]
41.
F. F.
da Silva
,
P.
Bartl
,
S.
Denifl
,
O.
Echt
,
T. D.
Märk
, and
P.
Scheier
, “
Argon clusters embedded in helium nanodroplets
,”
Phys. Chem. Chem. Phys.
11
,
9791
9797
(
2009
).
42.
C. E.
Klots
, “
Evaporation from small particles
,”
J. Phys. Chem
.
92
,
5864
5868
(
1988
);
K.
Hansen
and
U.
Näher
, “
Evaporation and cluster abundance spectra
,”
Phys. Rev. A
60
,
1240
1250
(
1999
).
43.
X.-Y.
Sun
,
Z.-R.
Li
,
D.
Wu
,
C.-C.
Sun
,
S.
Gudowski
,
F.-M.
Tao
, and
K. C.
Janda
, “
Asymmetrical linear structures including three-electron hemibonds or other interactions in the (ABA)-type triatomic cations: Ne3+, (He−Ne−He)+, (Ar−Ne−Ar)+, (Ar−O−Ar)+, (He−O−He)+, and (Ar−He−Ar)+
,”
J. Chem. Phys.
123
,
134304
(
2005
).
44.
K.
Hansen
and
E. E. B.
Campbell
, “
Do we know the value of the Gspann parameter?
,”
Int. J. Mass Spectrom.
233
,
215
221
(
2004
).
45.

Energies were read from Fig. 1 in Ref. 17. Note, however, that those data are total binding energies in hartree, rather than, as stated in the text, total energies per atom in eV.

46.
W. H.
Keesom
and
J.
Haantjes
, “
Vapour pressures of neon of different isotopic compositions
,”
Physica
2
,
986
999
(
1935
).
47.
K.
Clusius
and
H.
Meyer
, “
Ergebnisse der tieftemperaturforschung. XII. Anreicherung der leichten argonisotope durch rektifikation
,”
Helv. Chim. Acta
36
,
2045
2055
(
1953
);
P. M.
Grootes
,
W. G.
Mook
, and
J. C.
Vogel
, “
Isotopic fractionation between gaseous and condensed carbon dioxide
,”
Z. Phys.
221
,
257
273
(
1969
).
48.
G. R.
Stewart
, “
Measurement of low-temperature specific heat
,”
Rev. Sci. Instrum.
54
,
1
11
(
1983
).
49.
H. H.
Michels
,
R. H.
Hobbs
, and
L. A.
Wright
, “
Electronic structure of the noble gas dimer ions. I. Potential energy curves and spectroscopic constants
,”
J. Chem. Phys.
69
,
5151
5162
(
1978
).

Supplementary Material

You do not currently have access to this content.