Concurrent multiscale techniques such as Adaptive Resolution Scheme (AdResS) can offer ample computational advantages over conventional atomistic (AT) molecular dynamics simulations. However, they typically rely on aphysical hybrid regions to maintain numerical stability when high-resolution degrees of freedom (DOFs) are randomly re-inserted at the resolution interface. We propose an Energy Minimized AT (DOF) Insertion (EMATI) method that uses an informed rather than random AT DOF insertion to tackle the root cause of the issue, i.e., overlapping AT potentials. EMATI enables us to directly couple AT and coarse-grained resolutions without any modifications of the interaction potentials. We exemplify AdResS-EMATI in a system of liquid butane and show that it yields improved structural and thermodynamic properties at the interface compared to competing AdResS approaches. Furthermore, our approach extends the applicability of the AdResS without a hybrid region to systems for which force capping is inadequate.

1.
W. G.
Noid
, “
Perspective: Coarse-grained models for biomolecular systems
,”
J. Chem. Phys.
139
,
090901
(
2013
).
2.
H. I.
Ingólfsson
,
C. A.
Lopez
,
J. J.
Uusitalo
,
D. H.
de Jong
,
S. M.
Gopal
,
X.
Periole
, and
S. J.
Marrink
, “
The power of coarse graining in biomolecular simulations
,”
Wiley Interdiscip. Rev. Comput. Mol. Sci.
4
,
225
248
(
2014
).
3.
A. P.
Heath
,
L. E.
Kavraki
, and
C.
Clementi
, “
From coarse-grain to all-atom: Toward multiscale analysis of protein landscapes
,”
Proteins Struct. Funct. Genet.
68
,
646
661
(
2007
).
4.
C.
Peter
and
K.
Kremer
, “
Multiscale simulation of soft matter systems—From the atomistic to the coarse-grained level and back
,”
Soft Matter
5
,
4357
4366
(
2009
).
5.
A. J.
Rzepiela
,
L. V.
Schäfer
,
N.
Goga
,
H.
Jelger Risselada
,
A. H.
De Vries
, and
S. J.
Marrink
, “
Software news and update reconstruction of atomistic details from coarse-grained structures
,”
J. Comput. Chem.
31
,
1333
1343
(
2010
).
6.
T. A.
Wassenaar
,
K.
Pluhackova
,
R. A.
Böckmann
,
S. J.
Marrink
, and
D. P.
Tieleman
, “
Going backward: A flexible geometric approach to reverse transformation from coarse grained to atomistic models
,”
J. Chem. Theory Comput.
10
,
676
690
(
2014
).
7.
M.
Shimizu
and
S.
Takada
, “
Reconstruction of atomistic structures from coarse-grained models for protein-DNA complexes
,”
J. Chem. Theory Comput.
14
,
1682
1694
(
2018
).
8.
E.
Lyman
,
F. M.
Ytreberg
, and
D. M.
Zuckerman
, “
Resolution exchange simulation
,”
Phys. Rev. Lett.
96
,
028105
(
2006
).
9.
P.
Liu
and
G. A.
Voth
, “
Smart resolution replica exchange: An efficient algorithm for exploring complex energy landscapes
,”
J. Chem. Phys.
126
,
045106
(
2007
).
10.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
, “
Multiscale simulation of soft matter: From scale bridging to adaptive resolution
,”
Annu. Rev. Phys. Chem.
59
,
545
571
(
2008
).
11.
Y.
Shan
,
E. T.
Kim
,
M. P.
Eastwood
,
R. O.
Dror
,
M. A.
Seeliger
, and
D. E.
Shaw
, “
How does a drug molecule find its target binding site?
,”
J. Am. Chem. Soc.
133
,
9181
9183
(
2011
).
12.
Y.
Wang
,
T.
Zhao
,
D.
Wei
,
E.
Strandberg
,
A. S.
Ulrich
, and
J. P.
Ulmschneider
, “
How reliable are molecular dynamics simulations of membrane active antimicrobial peptides?
,”
Biochim. Biophys. Acta
1838
,
2280
2288
(
2014
).
13.
Q.
Shi
,
S.
Izvekov
, and
G. A.
Voth
, “
Mixed atomistic and coarse-grained molecular dynamics: Simulation of a membrane-bound ion channel
,”
J. Phys. Chem. B
110
,
15045
15048
(
2006
).
14.
A. J.
Rzepiela
,
M.
Louhivuori
,
C.
Peter
, and
S. J.
Marrink
, “
Hybrid simulations: Combining atomistic and coarse-grained force fields using virtual sites
,”
Phys. Chem. Chem. Phys.
13
,
10437
10448
(
2011
).
15.
P.
Sokkar
,
S. M.
Choi
, and
Y. M.
Rhee
, “
Simple method for simulating the mixture of atomistic and coarse-grained molecular systems
,”
J. Chem. Theory Comput.
9
,
3728
3739
(
2013
).
16.
A. B.
Kuhn
,
S. M.
Gopal
, and
L. V.
Schäfer
, “
On using atomistic solvent layers in hybrid all-atom/coarse-grained molecular dynamics simulations
,”
J. Chem. Theory Comput.
11
,
4460
4472
(
2015
).
17.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
, “
Adaptive resolution molecular-dynamics simulation: Changing the degrees of freedom on the fly
,”
J. Chem. Phys.
123
,
224106
(
2005
); arXiv:0510223 [cond-mat].
18.
J.
Zavadlav
,
M. N.
Melo
,
S. J.
Marrink
, and
M.
Praprotnik
, “
Adaptive resolution simulation of an atomistic protein in martini water
,”
J. Chem. Phys.
140
,
054114
(
2014
).
19.
J.
Zavadlav
,
S. J.
Marrink
, and
M.
Praprotnik
, “
Multiscale simulation of protein hydration using the SWINGER dynamical clustering algorithm
,”
J. Chem. Theory Comput.
14
,
1754
1761
(
2018
).
20.
J.
Zavadlav
,
J.
Sablić
,
R.
Podgornik
, and
M.
Praprotnik
, “
Open-boundary molecular dynamics of a DNA molecule in a hybrid explicit/implicit salt solution
,”
Biophys. J.
114
,
2352
2362
(
2018
).
21.
J.
Whittaker
and
L.
Delle Site
, “
Investigation of the hydration shell of a membrane in an open system molecular dynamics simulation
,”
Phys. Rev. Res.
1
,
033099
(
2019
).
22.
H.
Wang
,
C.
Hartmann
,
C.
Schütte
, and
L.
Delle Site
, “
Grand-canonical-like molecular-dynamics simulations by using an adaptive-resolution technique
,”
Phys. Rev. X
3
,
011018
(
2013
).
23.
A.
Agarwal
,
H.
Wang
,
C.
Schütte
, and
L.
Delle Site
, “
Chemical potential of liquids and mixtures via adaptive resolution simulation
,”
J. Chem. Phys.
141
,
034102
(
2014
); arXiv:1311.6982.
24.
R.
Potestio
,
S.
Fritsch
,
P.
Español
,
R.
Delgado-Buscalioni
,
K.
Kremer
,
R.
Everaers
, and
D.
Donadio
, “
Hamiltonian adaptive resolution simulation for molecular liquids
,”
Phys. Rev. Lett.
110
,
108301
(
2013
).
25.
J. H.
Peters
,
R.
Klein
, and
L.
Delle Site
, “
Simulation of macromolecular liquids with the adaptive resolution molecular dynamics technique
,”
Phys. Rev. E
94
,
023309
(
2016
).
26.
A.
Chaimovich
,
C.
Peter
, and
K.
Kremer
, “
Relative resolution: A hybrid formalism for fluid mixtures
,”
J. Chem. Phys.
143
,
243107
(
2015
); arXiv:1903.04755.
27.
C.
Junghans
,
A.
Agarwal
, and
L.
Delle Site
, “
Computational efficiency and Amdahl’s law for the adaptive resolution simulation technique
,”
Comput. Phys. Commun.
215
,
20
25
(
2017
).
28.
C.
Krekeler
,
A.
Agarwal
,
C.
Junghans
,
M.
Praprotnik
, and
L.
Delle Site
, “
Adaptive resolution molecular dynamics technique: Down to the essential
,”
J. Chem. Phys.
149
,
024104
(
2018
); arXiv:1806.09870.
29.
H.
Wang
,
C.
Schütte
, and
L.
Delle Site
, “
Adaptive resolution simulation (AdResS): A smooth thermodynamic and structural transition from atomistic to coarse grained resolution and vice versa in a grand canonical fashion
,”
J. Chem. Theory Comput.
8
,
2878
2887
(
2012
).
30.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1-2
,
19
25
(
2015
).
31.
H. V.
Guzman
,
N.
Tretyakov
,
H.
Kobayashi
,
A. C.
Fogarty
,
K.
Kreis
,
J.
Krajniak
,
C.
Junghans
,
K.
Kremer
, and
T.
Stuehn
, “
ESPResSo++ 2.0: Advanced methods for multiscale molecular simulation
,”
Comput. Phys. Commun.
238
,
66
76
(
2019
); arXiv:1806.10841.
32.
L.
Delle Site
,
C.
Krekeler
,
J.
Whittaker
,
A.
Agarwal
,
R.
Klein
, and
F.
Höfling
, “
Molecular dynamics of open systems: Construction of a mean-field particle reservoir
,”
Adv. Theory Simul.
2
,
1900014
(
2019
).
33.
S.
Poblete
,
M.
Praprotnik
,
K.
Kremer
, and
L.
Delle Site
, “
Coupling different levels of resolution in molecular simulations
,”
J. Chem. Phys.
132
,
114101
(
2010
).
34.
Y.
Liu
,
A. H.
De Vries
,
J.
Barnoud
,
W.
Pezeshkian
,
J.
Melcr
, and
S. J.
Marrink
, “
Dual resolution membrane simulations using virtual sites
,”
J. Phys. Chem. B
124
,
3944
3953
(
2020
).
35.
R.
Delgado-Buscalioni
and
P. V.
Coveney
, “
USHER: An algorithm for particle insertion in dense fluids
,”
J. Chem. Phys.
119
,
978
987
(
2003
); arXiv:0303366 [cond-mat].
36.
G.
De Fabritiis
,
R.
Delgado-Buscalioni
, and
P. V.
Coveney
, “
Energy controlled insertion of polar molecules in dense fluids
,”
J. Chem. Phys.
121
,
12139
(
2004
).
37.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
Van Gunsteren
, “
A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
,”
J. Comput. Chem.
25
,
1656
1676
(
2004
).
38.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
, “
Deriving effective mesoscale potentials from atomistic simulations
,”
J. Comput. Chem.
24
,
1624
1636
(
2003
).
39.
S.
Bevc
,
C.
Junghans
, and
M.
Praprotnik
, “
STOCK: Structure mapper and online coarse-graining kit for molecular simulations
,”
J. Comput. Chem.
36
,
467
477
(
2015
).
40.
S.
Fritsch
,
S.
Poblete
,
C.
Junghans
,
G.
Ciccotti
,
L.
Delle Site
, and
K.
Kremer
, “
Adaptive resolution molecular dynamics simulation through coupling to an internal particle reservoir
,”
Phys. Rev. Lett.
108
,
170602
(
2012
); arXiv:1112.3151.
41.
S.
Matysiak
,
C.
Clementi
,
M.
Praprotnik
,
K.
Kremer
, and
L.
Delle Site
, “
Modeling diffusive dynamics in adaptive resolution simulation of liquid water
,”
J. Chem. Phys.
128
,
024503
(
2008
).
42.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
43.
C.
Junghans
,
M.
Praprotnik
, and
K.
Kremer
, “
Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat
,”
Soft Matter
4
,
156
161
(
2008
).
44.
J.
Zavadlav
,
M. N.
Melo
,
A. V.
Cunha
,
A. H.
de Vries
,
S. J.
Marrink
, and
M.
Praprotnik
, “
Adaptive resolution simulation of MARTINI solvents
,”
J. Chem. Theory Comput.
10
,
2591
2598
(
2014
).
45.
M.
Praprotnik
,
K.
Kremer
, and
L.
Delle Site
, “
Adaptive molecular resolution via a continuous change of the phase space dimensionality
,”
Phys. Rev. E
75
,
017701
(
2007
).
46.

Allowing for flexible bonds and angles will increase rAT in practice.

47.
B.
Duenweg
,
J.
Castagna
,
S.
Chiacchiera
,
H.
Kobayashi
, and
C.
Krekeler
(
2018
). “
Meso- and multi-scale modelling E-CAM modules II
,” Zenodo. (
2018
).
48.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
, “
Structural relaxation made simple
,”
Phys. Rev. Lett.
97
,
170201
(
2006
).
49.
S.
Izvekov
and
G. A.
Voth
, “
A multiscale coarse-graining method for biomolecular systems
,”
J. Phys. Chem. B
109
,
2469
2473
(
2005
).
50.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
, “
The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models
,”
J. Chem. Phys.
128
,
244114
(
2008
).
51.
W. G.
Noid
,
P.
Liu
,
Y.
Wang
,
J.-W.
Chu
,
G. S.
Ayton
,
S.
Izvekov
,
H. C.
Andersen
, and
G. A.
Voth
, “
The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models
,”
J. Chem. Phys.
128
,
244115
(
2008
).
52.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
De Vries
, “
The MARTINI force field: Coarse grained model for biomolecular simulations
,”
J. Phys. Chem. B
111
,
7812
7824
(
2007
).
53.
L.-J.
Chen
,
H.-J.
Qian
,
Z.-Y.
Lu
,
Z.-S.
Li
, and
C.-C.
Sun
, “
An automatic coarse-graining and fine-graining simulation method: Application on polyethylene
,”
J. Phys. Chem. B
110
,
24093
24100
(
2006
).
54.
J.
Krajniak
,
Z.
Zhang
,
S.
Pandiyan
,
E.
Nies
, and
G.
Samaey
, “
Reverse mapping method for complex polymer systems
,”
J. Comput. Chem.
39
,
648
664
(
2018
).
55.
J.
Peng
,
C.
Yuan
,
R.
Ma
, and
Z.
Zhang
, “
Backmapping from multiresolution coarse-grained models to atomic structures of large biomolecules by restrained molecular dynamics simulations using Bayesian inference
,”
J. Chem. Theory Comput.
15
,
3344
3353
(
2019
).
56.
G.
Zhang
,
A.
Chazirakis
,
V. A.
Harmandaris
,
T.
Stuehn
,
K. C.
Daoulas
, and
K.
Kremer
, “
Hierarchical modelling of polystyrene melts: From soft blobs to atomistic resolution
,”
Soft Matter
15
,
289
302
(
2019
).
57.
W.
Li
,
C.
Burkhart
,
P.
Polińska
,
V.
Harmandaris
, and
M.
Doxastakis
, “
Backmapping coarse-grained macromolecules: An efficient and versatile machine learning approach
,”
J. Chem. Phys.
153
,
041101
(
2020
).
You do not currently have access to this content.