Many problems in materials science and biology involve particles interacting with strong, short-ranged bonds that can break and form on experimental timescales. Treating such bonds as constraints can significantly speed up sampling their equilibrium distribution, and there are several methods to sample probability distributions subject to fixed constraints. We introduce a Monte Carlo method to handle the case when constraints can break and form. More generally, the method samples a probability distribution on a stratification: a collection of manifolds of different dimensions, where the lower-dimensional manifolds lie on the boundaries of the higher-dimensional manifolds. We show several applications of the method in polymer physics, self-assembly of colloids, and volume calculation in high dimensions.

1.
H. C.
Andersen
, “
Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations
,”
J. Comput. Phys.
52
,
24
34
(
1983
).
2.
E.
Barth
,
K.
Kuczera
,
B.
Leimkuhler
, and
R.
Steel
, “
Algorithms for constrained molecular dynamics
,”
J. Comput. Chem.
16
,
1192
1209
(
1995
).
3.
L. A.
Girifalco
, “
Molecular properties of fullerene in the gas and solid phases
,”
J. Phys. Chem.
96
(
2
),
858
861
(
1992
).
4.
V. N.
Manoharan
, “
Colloidal matter: Packing, geometry, and entropy
,”
Science
349
(
6251
),
1253751
(
2015
).
5.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
,
327
(
1977
).
6.
S.
Byrne
and
M.
Girolami
, “
Geodesic Monte Carlo on embedded manifolds
,”
Scand. J. Stat.
40
,
825
(
2013
).
7.
G.
Ciccotti
,
T.
Lelièvre
, and
E.
Vanden-Eijnden
, “
Projection of diffusions on submanifolds: Application to mean force computation
,”
Commun. Pure Appl. Math.
61
(
3
),
371
408
(
2007
).
8.
T.
Lelièvre
,
M.
Rousset
, and
G.
Stoltz
, “
Langevin dynamics with constraints and computation of free energy differences
,”
Math. Comput.
81
(
280
),
2071
2125
(
2012
).
9.
T.
Lelièvre
,
M.
Rousset
, and
G.
Stoltz
, “
Hybrid Monte Carlo methods for sampling probability measures on submanifolds
,”
Numerische Math.
143
,
379
421
(
2019
).
10.
E.
Vanden-Eijnden
and
G.
Ciccotti
, “
Second-order integrators for Langevin equations with holonomic constraints
,”
Chem. Phys. Lett.
429
(
1-3
),
310
316
(
2006
).
11.
E.
Zappa
,
M.
Holmes-Cerfon
, and
J.
Goodman
, “
Monte Carlo on manifolds: Sampling densities and integrating functions
,”
Commun. Pure Appl. Math.
71
(
12
),
2609
2647
(
2018
).
12.
M.
Holmes-Cerfon
,
S. J.
Gortler
, and
M. P.
Brenner
, “
A geometrical approach to computing free-energy landscapes from short-ranged potentials
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
1
),
E5
E14
(
2013
).
13.
R. W.
Perry
,
M. C.
Holmes-Cerfon
,
M. P.
Brenner
, and
V. N.
Manoharan
, “
Two-dimensional clusters of colloidal spheres: Ground states, excited states, and structural rearrangements
,”
Phys. Rev. Lett.
114
(
22
),
228301-5
(
2015
).
14.
Yu
Wang
,
Y.
Wang
,
X.
Zheng
,
E.
Ducrot
,
J. S.
Yodh
,
M.
Weck
, and
D. J.
Pine
, “
Crystallization of DNA-coated colloids
,”
Nat. Commun.
6
,
7253
(
2015
).
15.
W. B.
Rogers
,
W. M.
Shih
, and
V. N.
Manoharan
, “
Using DNA to program the self-assembly of colloidal nanoparticles and microparticles
,”
Nat. Rev. Mater.
1
(
3
),
16008
(
2016
).
16.
M.
Goresky
, “
Introduction to the papers of R. Thom and J. Mather [MR0239613; MR2958928]
,”
Bull. Amer. Math. Soc.
49
(
4
),
469
474
(
2012
).
17.
M.
Goresky
and
R.
MacPherson
, “
Stratified morse theory
,” in
Stratified Morse Theory
(
Springer
,
1988
), pp.
3
22
.
18.
P. J.
Green
, “
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
,”
Biometrika
82
(
4
),
711
732
(
1995
).
19.
B.
Chen
and
J. I.
Siepmann
, “
A novel Monte Carlo algorithm for simulating strongly associating fluids: Applications to water, hydrogen fluoride, and acetic acid
,”
J. Phys. Chem. B
104
(
36
),
8725
8734
(
2000
).
20.
J.
Liu
and
E.
Luijten
, “
Rejection-free geometric cluster algorithm for complex fluids
,”
Phys. Rev. Lett.
92
(
3
),
035504
(
2004
).
21.
W. G. T.
Kranendonk
and
D.
Frenkel
, “
Simulation of the adhesive-hard-sphere model
,”
Mol. Phys.
64
(
3
),
403
424
(
1988
).
22.
M. A.
Miller
and
D.
Frenkel
, “
Phase diagram of the adhesive hard sphere fluid
,”
J. Chem. Phys.
121
(
1
),
535
(
2004
).
23.
N. A.
Seaton
and
E. D.
Glandt
, “
Monte Carlo simulation of adhesive disks
,”
J. Chem. Phys.
84
(
8
),
4595
4601
(
1986
).
24.
N. A.
Seaton
and
E. D.
Glandt
, “
Monte Carlo simulation of adhesive spheres
,”
J. Chem. Phys.
87
(
3
),
1785
1790
(
1987
).
25.
S.
Whitelam
and
P. L.
Geissler
, “
Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles
,”
J. Chem. Phys.
127
(
15
),
154101
(
2007
).
26.
J. P. K.
Doye
,
T. E.
Ouldridge
,
A. A.
Louis
,
F.
Romano
,
P.
Šulc
,
C.
Matek
,
B. E. K.
Snodin
,
L.
Rovigatti
,
J. S.
Schreck
,
R. M.
Harrison
, and
W. P. J.
Smith
, “
Coarse-graining DNA for simulations of DNA nanotechnology
,”
Phys. Chem. Chem. Phys.
15
(
47
),
20395-21
(
2013
).
27.
R.
De Gernier
,
T.
Curk
,
G. V.
Dubacheva
,
R. P.
Richter
, and
B. M.
Mognetti
, “
A new configurational bias scheme for sampling supramolecular structures
,”
J. Chem. Phys.
141
(
24
),
244909-12
(
2014
).
28.
B.
Oyarzún
and
B. M.
Mognetti
, “
Efficient sampling of reversible cross-linking polymers: Self-assembly of single-chain polymeric nanoparticles
,”
J. Chem. Phys.
148
(
11
),
114110-15
(
2018
).
29.

The way κij is defined here gives it units of length. To obtain a dimensionless sticky parameter, we must write the argument of the delta function as δ(rij − 1). However, doing so would require carrying around factors of σij in our later calculations, so we instead work with a dimensional κij for notational convenience.

30.
R. J.
Baxter
, “
Percus–Yevick equation for hard spheres with surface adhesion
,”
J. Chem. Phys.
49
(
6
),
2770
(
1968
).
31.
D.
Gazzillo
and
A.
Giacometti
, “
Analytic solutions for Baxter’s model of sticky hard sphere fluids within closures different from the Percus–Yevick approximation
,”
J. Chem. Phys.
120
,
4742
(
2004
).
32.
G.
Stell
, “
Sticky spheres and related systems
,”
J. Stat. Phys.
63
,
1203
(
1991
).
33.

A dimensionless sticky parameter would be defined as κ=limρ,Eσ10σ+ϵeUmorse(r)/kBTdr.

34.
N.
Bou-Rabee
and
M. C.
Holmes-Cerfon
, “
Sticky Brownian motion and its numerical solution
,”
SIAM Rev.
62
(
1
),
164
195
(
2020
).
35.
A.
Trubiano
and
M.
Holmes-Cerfon
, “
From canyons to valleys: Numerically continuing sticky hard sphere clusters to the landscapes of smoother potentials
,” arXiv:1908.09896 (
2019
).
36.
M. G.
Noro
and
D.
Frenkel
, “
Extended corresponding-states behavior for particles with variable range attractions
,”
J. Chem. Phys.
113
(
8
),
2941
2944
(
2000
).
37.
H.
Federer
,
Geometric Measure Theory
(
Springer
,
2014
).
38.
F.
Morgan
,
Geometric Measure Theory: A Beginner’s Guide
, 5th ed. (
Academic Press
,
2016
).
39.
F.
Marshall
, “
Classical statistical mechanics of constraints: A theorem and application to polymers
,”
Proc. Natl. Acad. Sci. U. S. A.
71
(
8
),
3050
3053
(
1974
).
40.

Loosely, if two manifolds X, Y with dim(Y) < dim(X) are in the stratification, and YX¯, i.e., Y is in the closure of X, then at every point yY, the stratification near y has to look locally like a cone, and furthermore, the topology of this local picture is the Same for all yY. Specifically, a stratification is usually assumed to satisfy Whitney’s condition B at all yY, which is as follows:28 Given X, Y as above, suppose that (i) sequence x1, x2, …, ∈ X converges to y, (ii) sequence y1, y2, …, ∈ Y converges to y, (iii) the secant lines li=xiyi¯ converge to a limiting line l in some local coordinate system near y, and (iv) the tangent planes TxiX converge to a limiting plane τ. Then, lτ.

41.
M. C.
Holmes-Cerfon
, “
Enumerating rigid sphere packings
,”
SIAM Rev.
58
(
2
),
229
244
(
2016
).
42.
Y.
Kallus
and
M.
Holmes-Cerfon
, “
Free energy of singular sticky-sphere clusters
,”
Phys. Rev. E
95
(
2
),
022130
(
2017
).
43.
P.
Eastman
and
V. S.
Pande
, “
Constant constraint matrix approximation: A robust, parallelizable constraint method for molecular simulations
,”
J. Chem. Theory Comput.
6
,
434
437
(
2010
).
44.
See https://github.com/mirandaholmes/stratification-paper.git for the codes to run all examples and reproduce the statistics and figures.
45.
N. G.
van Kampen
, “
Statistical mechanics of trimers
,”
Appl. Sci. Res.
37
(
1-2
),
67
75
(
1981
).
46.
M.
Holmes-Cerfon
, “
Stochastic disks that roll
,”
Phys. Rev. E
94
(
5
),
95
12
(
2016
).
47.
J. A.
Fan
,
C.
Wu
,
K.
Bao
,
J.
Bao
,
R.
Bardhan
,
N. J.
Halas
,
V. N.
Manoharan
,
P.
Nordlander
,
G.
Shvets
, and
F.
Capasso
, “
Self-Assembled plasmonic nanoparticle clusters
,”
Science
328
(
5982
),
1135
1138
(
2010
).
48.
G.
Meng
,
N.
Arkus
,
M. P.
Brenner
, and
V. N.
Manoharan
, “
The free-energy landscape of clusters of attractive hard spheres
,”
Science
327
(
5965
),
560
563
(
2010
).
49.
M. Z.
Miskin
,
G.
Khaira
,
J. J.
de Pablo
, and
H. M.
Jaeger
, “
Turning statistical physics models into materials design engines
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
1
),
34
39
(
2016
).
50.
S.
Hormoz
and
M. P.
Brenner
, “
Design principles for self-assembly with short-range interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
13
),
5193
5198
(
2011
).
51.
Z.
Zeravcic
,
V. N.
Manoharan
, and
M. P.
Brenner
, “
Size limits of self-assembled colloidal structures made using specific interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
45
),
15918
15923
(
2014
).
52.
M. H.
Huntley
,
A.
Murugan
, and
M. P.
Brenner
, “
Information capacity of specific interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
21
),
5841
5846
(
2016
).
53.
P. G.
De Gennes
, “
Polymer solutions near an interface. Adsorption and depletion layers
,”
Macromolecules
14
(
6
),
1637
1644
(
1981
).
54.
E.
Eisenriegler
,
K.
Kremer
, and
K.
Binder
, “
Adsorption of polymer chains at surfaces: Scaling and Monte Carlo analyses
,”
J. Chem. Phys.
77
(
12
),
6296
6320
(
1982
).
55.
A.
Milchev
and
K.
Binder
, “
Linear dimensions of adsorbed semiflexible polymers: What can be learned about their persistence length?
,”
Phys. Rev. Lett.
123
(
12
),
128003
(
2019
).
56.
B. P.
Flannery
,
W. H.
Press
,
W. T.
Vetterling
, and
S. A.
Teukolsky
,
Numerical Recipes in C
, 3rd ed. (
Cambridge University Press
,
2007
).
57.
L. N.
Trefethen
and
D.
Bau
 III
,
Numerical Linear Algebra
(
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
,
1997
).
58.
M.
Simonovits
, “
How to compute the volume in high dimension?
,” in
Mathematical Programming
(
Springer
,
2003
).
59.
I.
Rivin
, “
Surface area and other measures of ellipsoids
,”
Adv. Appl. Math.
39
(
4
),
409
427
(
2007
).
60.
A.
Martinsson
,
J.
Lu
,
B.
Leimkuhler
, and
E.
Vanden-Eijnden
, “
The simulated tempering method in the infinite switch limit with adaptive weight learning
,”
J. Stat. Mech.: Theory Exp.
2019
(
1
),
013207–32
(
2019
).
61.
D.
Frenkel
and
A. J. C.
Ladd
, “
New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres
,”
J. Chem. Phys.
81
(
7
),
3188
(
1984
).
62.
L.
Lovász
and
S.
Vempala
, “
Simulated annealing in convex bodies and an O*(n4) volume algorithm
,”
J. Comput. Syst. Sci.
72
(
2
),
392
417
(
2006
).
63.

We should really linearize q(x + hv + w), where w is an (unknown) vector in the normal space to MI at x. The contribution from w vanishes to linear order, since linearizing the equations qi(x + u) = 0, iIeq defining manifold MI, gives iIequqi=0. Therefore, any vector u that maintains the constraints to linear order must lie in the tangent space to MI at x.

64.
A.
Bjorck
and
G. H.
Golub
, “
Numerical methods for computing angles between linear subspaces
,”
Math. Comput.
27
(
123
),
579
594
(
1973
).
65.
I. C. F.
Ipsen
and
C. D.
Meyer
, “
The angle between complementary subspaces
,”
Am. Math. Mon.
102
(
10
),
904
911
(
1995
).
66.
A. V.
Knyazev
and
M. E.
Argentati
, “
Majorization for changes in angles between subspaces, Ritz values, and graph Laplacian spectra
,”
SIAM J. Matrix Anal. Appl.
29
(
1
),
15
32
(
2007
).
67.
Y.
Weinbach
and
R.
Elber
, “
Revisiting and parallelizing SHAKE
,”
J. Comput. Phys.
209
(
1
),
193
206
(
2005
).
68.
B.
Leimkuhler
and
C.
Matthews
, “
Efficient molecular dynamics using geodesic integration and solvent–solute splitting
,”
Proc. R. Soc. A
472
(
2189
),
20160138-22
(
2016
).
69.
M.
Holmes-Cerfon
,
L.
Theran
, and
S. J.
Gortler
, “
Almost-rigidity of frameworks
,” arXiv:1908.03802 (
2019
).
70.
F.
Nedelec
and
D.
Foethke
, “
Collective Langevin dynamics of flexible cytoskeletal fibers
,”
New J. Phys.
9
(
11
),
427
(
2007
).
71.
B.
Leimkuhler
,
C.
Matthews
, and
T.
Vlaar
, “
Partitioned integrators for thermodynamic parameterization of neural networks
,” arXiv:1908.11843 (
2019
).
72.
R.
Connelly
and
S. J.
Gortler
, “
Packing disks by flipping and flowing
,” arXiv:1910.02327 (
2019
).
You do not currently have access to this content.