We demonstrate an efficient algorithm for inverse problems in time-dependent quantum dynamics based on feedback loops between Hamiltonian parameters and the solutions of the Schrödinger equation. Our approach formulates the inverse problem as a target vector estimation problem and uses Bayesian surrogate models of the Schrödinger equation solutions to direct the optimization of feedback loops. For the surrogate models, we use Gaussian processes with vector outputs and composite kernels built by an iterative algorithm with the Bayesian information criterion (BIC) as a kernel selection metric. The outputs of the Gaussian processes are designed to model an observable simultaneously at different time instances. We show that the use of Gaussian processes with vector outputs and the BIC-directed kernel construction reduces the number of iterations in the feedback loops by, at least, a factor of 3. We also demonstrate an application of Bayesian optimization for inverse problems with noisy data. To demonstrate the algorithm, we consider the orientation and alignment of polyatomic molecules SO2 and propylene oxide (PPO) induced by strong laser pulses. We use simulated time evolutions of the orientation or alignment signals to determine the relevant components of the molecular polarizability tensors. We show that, for the five independent components of the polarizability tensor of PPO, this can be achieved with as few as 30 quantum dynamics calculations.

1.
B. N.
Zakhariev
and
V. M.
Chabanov
, “
New situation in quantum mechanics (wonderful potentials from the inverse problem)
,”
Inverse Probl.
13
,
R47
(
1997
).
2.
I.
Levine
,
Molecular Spectroscopy
(
Wiley
,
New York
,
1975
).
3.
J.
Kraitchman
, “
Determination of molecular structure from microwave spectroscopic data
,”
Am. J. Phys.
21
,
17
(
1953
).
4.
F. E.
Marshall
,
G.
Sedo
,
C.
West
,
B. H.
Pate
,
S. M.
Allpress
,
C. J.
Evans
,
P. D.
Godfrey
,
D.
McNaughton
, and
G. S.
Grubbs
, “
The rotational spectrum and complete heavy atom structure of the chiral molecule verbenone
,”
J. Mol. Spectrosc.
342
,
109
(
2017
).
5.
T.
Kierspel
,
A.
Morgan
,
J.
Wiese
,
T.
Mullins
,
A.
Aquila
,
A.
Barty
,
R.
Bean
,
R.
Boll
,
S.
Boutet
,
P.
Bucksbaum
,
H. N.
Chapman
,
L.
Christensen
,
A.
Fry
,
M.
Hunter
,
J. E.
Koglin
,
M.
Liang
,
V.
Mariani
,
A.
Natan
,
J.
Robinson
,
D.
Rolles
,
A.
Rudenko
,
K.
Schnorr
,
H.
Stapelfeldt
,
S.
Stern
,
J.
Thøgersen
,
C. H.
Yoon
,
F.
Wang
, and
J.
Küpper
, “
X-ray diffractive imaging of controlled gas-phase molecules: Toward imaging of dynamics in the molecular frame
,”
J. Chem. Phys.
152
,
084307
(
2020
).
6.
M.
Pitzer
,
M.
Kunitski
,
A. S.
Johnson
,
T.
Jahnke
,
H.
Sann
,
F.
Sturm
,
L. P. H.
Schmidt
,
H.
Schmidt-Böcking
,
R.
Dörner
,
J.
Stohner
,
J.
Kiedrowski
,
M.
Reggelin
,
S.
Marquardt
,
A.
Schiesser
,
R.
Berger
, and
M. S.
Schöffler
, “
Direct determination of absolute molecular stereochemistry in gas phase by Coulomb explosion imaging
,”
Science
341
,
1096
(
2013
).
7.
E. T.
Karamatskos
,
S.
Raabe
,
T.
Mullins
,
A.
Trabattoni
,
P.
Stammer
,
G.
Goldsztejn
,
R. R.
Johansen
,
K.
Długołecki
,
H.
Stapelfeldt
,
M. J. J.
Vrakking
,
S.
Trippel
,
A.
Rouzée
, and
J.
Küpper
, “
Molecular movie of ultrafast coherent rotational dynamics of OCS
,”
Nat. Commun.
10
,
3364
(
2019
).
8.
R. J.
LeRoy
and
R. B.
Bernstein
, “
Dissociation energy and long-range potential of diatomic molecules from vibrational spacings of higher levels
,”
J. Chem. Phys.
52
,
3869
(
1970
).
9.
A.
Pashov
,
W.
Jastrzȩbski
, and
P.
Kowalczyk
, “
Construction of potential curves for diatomic molecular states by the IPA method
,”
Comput. Phys. Commun.
128
,
622
(
2000
).
10.
S. M.
Kirschner
and
J. K. G.
Watson
, “
RKR potentials and semiclassical centrifugal constants of diatomic molecules
,”
J. Mol. Spectrosc.
47
,
234
(
1973
).
11.
R. A.
Vargas-Hernández
,
Y.
Guan
,
D. H.
Zhang
, and
R. V.
Krems
, “
Bayesian optimization for the inverse scattering problem in quantum reaction dynamics
,”
New J. Phys.
21
,
022001
(
2019
).
12.
F.
Cailliez
and
P.
Pernot
, “
Statistical approaches to forcefield calibration and prediction uncertainty in molecular simulation
,”
J. Chem. Phys.
134
,
054124
(
2011
).
13.
G.
Reinisch
,
K.
Miki
,
G. L.
Vignoles
,
B. M.
Wong
, and
C. S.
Simmons
, “
An efficient and accurate formalism for the treatment of large amplitude intramolecular motion
,”
J. Chem. Theory Comput.
8
,
2713
(
2012
).
14.
P.
Angelikopoulos
,
C.
Papadimitriou
, and
P.
Koumoutsakos
, “
Bayesian uncertainty quantification and propagation in molecular dynamics simulations: A high performance computing framework
,”
J. Chem. Phys.
137
,
144103
(
2012
).
15.
F.
Rizzi
,
H. N.
Najm
,
B. J.
Debusschere
,
K.
Sargsyan
,
M.
Salloum
,
H.
Adalsteinsson
, and
O. M.
Knio
, “
Uncertainty quantification in MD simulations. Part II: Bayesian inference of force-field parameters
,”
Multiscale Model. Simul.
10
,
1460
(
2012
).
16.
F.
Cailliez
,
A.
Bourasseau
, and
P.
Pernot
, “
Calibration of forcefields for molecular simulation: Sequential design of computer experiments for building cost-efficient kriging metamodels
,”
J. Comput. Chem.
35
,
130
(
2014
).
17.
P.
Pernot
, “
The parameter uncertainty inflation fallacy
,”
J. Chem. Phys.
147
,
104102
(
2017
).
18.
S.
Wu
,
P.
Angelikopoulos
,
G.
Tauriello
,
C.
Papadimitriou
, and
P.
Koumoutsakos
, “
Fusing heterogeneous data for the calibration of molecular dynamics force fields using hierarchical Bayesian models
,”
J. Chem. Phys.
145
,
244112
(
2016
).
19.
P. L. A.
Popelier
, “
QCTFF: On the construction of a novel protein force field
,”
Int. J. Quantum Chem.
115
,
1005
(
2015
).
20.
V.
Botu
and
R.
Ramprasad
, “
Adaptive machine learning framework to accelerate ab initio molecular dynamics
,”
Int. J. Quantum Chem.
115
,
1074
(
2015
).
21.
M.
Caccin
,
Z.
Li
,
J. R.
Kermode
, and
A.
De Vita
, “
A framework for machine-learning-augmented multiscale atomistic simulations on parallel supercomputers
,”
Int. J. Quantum Chem.
115
,
1129
(
2015
).
22.
J.
Cui
and
R. V.
Krems
, “
Gaussian process model for collision dynamics of complex molecules
,”
Phys. Rev. Lett.
115
,
073202
(
2015
).
23.
R. V.
Krems
, “
Bayesian machine learning for quantum molecular dynamics
,”
Phys. Chem. Chem. Phys.
21
,
13392
(
2019
).
24.
J.
Snoek
,
H.
Larochelle
, and
R. P.
Adams
, “
Practical Bayesian optimization of machine learning algorithms
,”
Adv. Neural Inf. Process. Syst.
25
,
2951
(
2012
).
25.
B.
Shahriari
,
K.
Swersky
,
Z.
Wang
,
R. P.
Adams
, and
N.
de Freitas
, “
Taking the human out of the loop: A review of Bayesian optimization
,”
Proc. IEEE
104
,
148
(
2016
).
26.
D. K.
Duvenaud
,
H.
Nickisch
, and
C. E.
Rasmussen
, “
Additive Gaussian processes
,”
Adv. Neural Inf. Process. Syst.
24
,
226
(
2011
).
27.
D. K.
Duvenaud
,
J.
Lloyd
,
R.
Grosse
,
J. B.
Tenenbaum
, and
Z.
Ghahramani
, “
Structure discovery in nonparametric regression through compositional kernel search
,” in
Proceedings of the 30th International Conference on Machine Learning Research
(
PMLR
,
2013
), Vol. 28, p.
1166
.
28.
R.
Vargas-Hernandez
,
J.
Sous
,
M.
Berciu
, and
R. V.
Krems
, “
Extrapolating quantum observables with machine learning: Inferring multiple phase transitions from properties of a single phase
,”
Phys. Rev. Lett.
121
,
255702
(
2018
).
29.
J.
Dai
and
R. V.
Krems
, “
Interpolation and extrapolation of global potential energy surfaces for polyatomic systems by Gaussian processes with composite kernels
,”
J. Chem. Theory Comput.
16
,
1386
(
2020
).
30.
K. D.
Bonin
and
V. V.
Kresin
,
Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters
(
World Scientific
,
1997
).
31.
R. N.
Zare
,
Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics
(
Wiley-Interscience
,
1991
).
32.
H.
Goldstein
,
Classical Mechanics
, 3rd ed. (
Pearson
,
2001
).
33.
M.
Lemeshko
,
R. V.
Krems
,
J. M.
Doyle
, and
S.
Kais
, “
Manipulation of molecules with electromagnetic fields
,”
Mol. Phys.
111
,
1648
(
2013
).
34.
R.
Krems
,
Molecules in Electromagnetic Fields: From Ultracold Physics to Controlled Chemistry
(
John Wiley & Sons
,
2018
).
35.
S.
Kallush
and
S.
Fleischer
, “
Orientation dynamics of asymmetric rotors using random phase wave functions
,”
Phys. Rev. A
91
,
063420
(
2015
).
36.
R.
Damari
,
S.
Kallush
, and
S.
Fleischer
, “
Rotational control of asymmetric molecules: Dipole- versus polarizability-driven rotational dynamics
,”
Phys. Rev. Lett.
117
,
103001
(
2016
).
37.
H.
Stapelfeldt
and
T.
Seideman
, “
Colloquium: Aligning molecules with strong laser pulses
,”
Rev. Mod. Phys.
75
,
543
(
2003
).
38.
C. P.
Koch
,
M.
Lemeshko
, and
D.
Sugny
, “
Quantum control of molecular rotation
,”
Rev. Mod. Phys.
91
,
035005
(
2019
).
39.
O.
Faucher
,
B.
Lavorel
,
E.
Hertz
, and
F.
Chaussard
,
Progress in Ultrafast Intense Laser Science VII
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2011
), pp.
79
108
.
40.
J.
Bert
,
E.
Prost
,
I.
Tutunnikov
,
P.
Béjot
,
E.
Hertz
,
F.
Billard
,
B.
Lavorel
,
U.
Steinitz
,
I. Sh.
Averbukh
, and
O.
Faucher
, “
Optical imaging of coherent molecular rotors
,”
Laser Photonics Rev.
14
,
1900344
(
2020
).
41.
K.
Lin
,
I.
Tutunnikov
,
J.
Ma
,
J.
Qiang
,
L.
Zhou
,
O.
Faucher
,
Y.
Prior
,
I. Sh.
Averbukh
, and
J.
Wu
, “
Spatiotemporal rotational dynamics of laser-driven molecules
,”
Adv. Photonics
2
,
024002
(
2020
).
42.
P.
Babilotte
,
K.
Hamraoui
,
F.
Billard
,
E.
Hertz
,
B.
Lavorel
,
O.
Faucher
, and
D.
Sugny
, “
Observation of the field-free orientation of a symmetric-top molecule by terahertz laser pulses at high temperature
,”
Phys. Rev. A
94
,
043403
(
2016
).
43.
R. M.
Neal
,
Bayesain Methods for Machine Learning
(
NIPS Tutorial
,
2004
), https://www.cs.toronto.edu/∼radford/ftp/bayes-tut.pdf.
44.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
(
The MIT Press
,
Cambridge
,
2006
).
45.
T.
Mitchell
,
M.
Morris
, and
D.
Ylvisaker
, “
Existence of smoothed stationary processes on an interval
,”
Stochastic Processes Appl.
35
,
109
(
1990
).
46.
N. A. C.
Cressie
,
Statistics for Spatial Data
(
Wiley-Interscience
,
New York
,
1993
).
47.
M. L.
Stein
,
Interpolation of Spatial Data: Some Theory for Kriging
(
Springer Science & Business Media
,
1999
).
48.
A. K.
Uhrenholt
and
B. S.
Jensen
, “
Efficient Bayesian optimization for target vector estimation
,”
Proc. Mach. Learn. Res.
89
,
2661
(
2019
).
49.
M.
Sankaran
, “
On the non-central chi-square distribution
,”
Biometrika
46
,
235
(
1959
).
50.
I.
Tutunnikov
,
J.
Floß
,
E.
Gershnabel
,
P.
Brumer
, and
I. Sh.
Averbukh
, “
Laser induced persistent orientation of chiral molecules
,”
Phys. Rev. A
100
,
043406
(
2019
).
51.
M.
Stein
, “
Large sample properties of simulations using Latin hypercube sampling
,”
Technometrics
29
,
143
(
1987
).
52.
J.
Cui
and
R. V.
Krems
, “
Efficient non-parametric fitting of potential energy surfaces for polyatomic molecules with Gaussian processes
,”
J. Phys. B
49
,
224001
(
2016
).
53.
E. F.
Thomas
,
A. A.
Søndergaard
,
B.
Shepperson
,
N. E.
Henriksen
, and
H.
Stapelfeldt
, “
Hyperfine-structure-induced depolarization of impulsively aligned I2 molecules
,”
Phys. Rev. Lett.
120
,
163202
(
2018
).
54.
G.
Schwarz
, “
Estimating the dimension of a model
,”
Ann. Stat.
6
(
2
),
461
(
1978
).
55.
J. L.
Loeppky
,
J.
Sacks
, and
W. J.
Welch
, “
Choosing the sample size of a computer experiment: A practical guide
,”
Technometrics
51
,
366
(
2009
).
56.
H.
Sugisawa
,
T.
Ida
, and
R. V.
Krems
, “
Gaussian process model of 51-dimensional potential energy surface the protonated imidazole dimer
,”
J. Chem. Phys.
153
,
114101
(
2020
).
57.
Y.
Cao
,
M. A.
Brubaker
,
D. J.
Fleet
, and
A.
Hertzmann
, “
Efficient optimization for sparse Gaussian process regression
,”
IEEE Trans. Pattern Anal. Mach. Intell.
37
,
2415
(
2015
).
58.
J. Q.
Quinonero-Candela
and
C. E.
Rasmussen
, “
A unifying view of sparse approximate Gaussian process regression
,”
J. Mach. Learn. Res.
6
,
1939
(
2005
).
59.
E.
Snelson
and
Z.
Ghahramani
, in
Advances in Neural Information Processing Systems 18
, edited by
Y.
Weiss
,
B.
Schölkopf
and
J.
Platt
(
MIT Press
,
2006
), pp.
1257
1264
.
60.
J.
Schreiter
,
D.
Nguyen-Tuong
, and
M.
Toussaint
, “
Efficient sparsification for Gaussian process regression
,”
Neurocomputing
192
,
29
(
2016
).
61.
M. C.
Kennedy
and
A.
O’Hagan
, “
Bayesian calibration of computer models
,”
J. Royal Stat. Soc. B
63
,
425
(
2001
).
62.].
A.
Jasinski
,
J.
Montaner
,
R. C.
Forrey
,
B. H.
Yang
,
P. C.
Stancil
,
N.
Balakrishnan
,
J.
Dai
,
R. A.
Vargas-Hernández
, and
R. V.
Krems
, “
Machine learning corrected quantum dynamics calculations
,”
Phys. Rev. Res.
2
,
032051
(
2020
).

Supplementary Material

You do not currently have access to this content.