Lithium ion batteries often contain transition metal oxides such as LixMn2O4 (0 ≤ x ≤ 2). Depending on the Li content, different ratios of MnIII to MnIV ions are present. In combination with electron hopping, the Jahn–Teller distortions of the MnIIIO6 octahedra can give rise to complex phenomena such as structural transitions and conductance. While for small model systems oxidation and spin states can be determined using density functional theory (DFT), the investigation of dynamical phenomena by DFT is too demanding. Previously, we have shown that a high-dimensional neural network potential can extend molecular dynamics (MD) simulations of LixMn2O4 to nanosecond time scales, but these simulations did not provide information about the electronic structure. Here, we extend the use of neural networks to the prediction of atomic oxidation and spin states. The resulting high-dimensional neural network is able to predict the spins of the Mn ions with an error of only 0.03 . We find that the Mn eg electrons are correctly conserved and that the number of Jahn–Teller distorted MnIIIO6 octahedra is predicted precisely for different Li loadings. A charge ordering transition is observed between 280 K and 300 K, which matches resistivity measurements. Moreover, the activation energy of the electron hopping conduction above the phase transition is predicted to be 0.18 eV, deviating only 0.02 eV from experiment. This work demonstrates that machine learning is able to provide an accurate representation of both the geometric and the electronic structure dynamics of LixMn2O4 on time and length scales that are not accessible by ab initio MD.

1.
J.-M.
Tarascon
and
M.
Armand
, “
Issues and challenges facing rechargeable lithium batteries
,”
Nature
414
,
359
367
(
2001
).
2.
J. B.
Goodenough
and
Y.
Kim
, “
Challenges for rechargeable Li batteries
,”
Chem. Mater.
22
,
587
603
(
2010
).
3.
G.
Hautier
,
C. C.
Fischer
,
A.
Jain
,
T.
Mueller
, and
G.
Ceder
, “
Finding nature’s missing ternary oxide compounds using machine learning and density functional theory
,”
Chem. Mater.
22
,
3762
3767
(
2010
).
4.
B.
Sanchez-Lengeling
and
A.
Aspuru-Guzik
, “
Inverse molecular design using machine learning: Generative models for matter engineering
,”
Science
361
,
360
365
(
2018
).
5.
N.
Nitta
,
F.
Wu
,
J. T.
Lee
, and
G.
Yushin
, “
Li-ion battery materials: Present and future
,”
Mater. Today
18
,
252
264
(
2015
).
6.
M.
Eckhoff
,
P. E.
Blöchl
, and
J.
Behler
, “
Hybrid density functional theory benchmark study on lithium manganese oxides
,”
Phys. Rev. B
101
,
205113
(
2020
).
7.
M. M.
Thackeray
,
W. I. F.
David
,
P. G.
Bruce
, and
J. B.
Goodenough
, “
Lithium insertion into manganese spinels
,”
Mater. Res. Bull.
18
,
461
472
(
1983
).
8.
M. M.
Thackeray
, “
Manganese oxides for lithium batteries
,”
Prog. Solid State Chem.
25
,
1
71
(
1997
).
9.
H. A.
Jahn
and
E.
Teller
, “
Stability of polyatomic molecules in degenerate electronic states
,”
Proc. R. Soc. London, Ser. A
161
,
220
235
(
1937
).
10.
J.
Rodríguez-Carvajal
,
G.
Rousse
,
C.
Masquelier
, and
M.
Hervieu
, “
Electronic crystallization in a lithium battery material: Columnar ordering of electrons and holes in the spinel LiMn2O4
,”
Phys. Rev. Lett.
81
,
4660
4663
(
1998
).
11.
V.
Massarotti
,
D.
Capsoni
,
M.
Bini
,
P.
Scardi
,
M.
Leoni
,
V.
Baron
, and
H.
Berg
, “
LiMn2O4 low-temperature phase: Synchrotron and neutron diffraction study
,”
J. Appl. Cryst.
32
,
1186
1189
(
1999
).
12.
P.
Piszora
, “
Temperature dependence of the order and distribution of Mn3+ and Mn4+ cations in orthorhombic LiMn2O4
,”
J. Alloys Compd.
382
,
112
118
(
2004
).
13.
J.
Akimoto
,
Y.
Takahashi
,
N.
Kijima
, and
Y.
Gotoh
, “
Single-crystal X-ray structure analysis of the low temperature form of LiMn2O4
,”
Solid State Ionics
172
,
491
494
(
2004
).
14.
L.
Schütte
,
G.
Colsmann
, and
B.
Reuter
, “
Kristallographische, elektronische und magnetische Eigenschaften des Spinells Li[Mn2]O4
,”
J. Solid State Chem.
27
,
227
231
(
1979
).
15.
J. B.
Goodenough
,
A.
Manthiram
, and
B.
Wnetrzewski
, “
Electrodes for lithium batteries
,”
J. Power Sources
43
,
269
275
(
1993
).
16.
Y.
Shimakawa
,
T.
Numata
, and
J.
Tabuchi
, “
Verwey-type transition and magnetic properties of the LiMn2O4 spinels
,”
J. Solid State Chem.
131
,
138
143
(
1997
).
17.
E.
Iguchi
,
N.
Nakamura
, and
A.
Aoki
, “
Electrical transport properties in LiMn2O4
,”
Philos. Mag. B
78
,
65
77
(
1998
).
18.
M.
Eckhoff
,
F.
Schönewald
,
M.
Risch
,
C. A.
Volkert
,
P. E.
Blöchl
, and
J.
Behler
, “
Closing the gap between theory and experiment for lithium manganese oxide spinels using a high-dimensional neural network potential
,” arXiv:2007.00327 [cond-mat.mtrl-sci] (
2020
).
19.
Y.
Takahashi
,
J.
Akimoto
,
Y.
Gotoh
,
K.
Dokko
,
M.
Nishizawa
, and
I.
Uchida
, “
Structure and electron density analysis of lithium manganese oxides by single-crystal X-ray diffraction
,”
J. Phys. Soc. Jpn.
72
,
1483
1490
(
2003
).
20.
J.
Akimoto
,
Y.
Takahashi
,
Y.
Gotoh
, and
S.
Mizuta
, “
Single crystal X-ray diffraction study of the spinel-type LiMn2O4
,”
Chem. Mater.
12
,
3246
3248
(
2000
).
21.
C. Y.
Ouyang
,
S. Q.
Shi
, and
M. S.
Lei
, “
Jahn-Teller distortion and electronic structure of LiMn2O4
,”
J. Alloys Compd.
474
,
370
374
(
2009
).
22.
A.
Mosbah
,
A.
Verbaere
, and
M.
Tournoux
, “
Phases LixMnO2 rattachees au type spinelle
,”
Mater. Res. Bull.
18
,
1375
1381
(
1983
).
23.
T.
Ohzuku
,
M.
Kitagawa
, and
T.
Hirai
, “
Electrochemistry of manganese dioxide in lithium nonaqueous cell
,”
J. Electrochem. Soc.
136
,
3169
3174
(
1989
).
24.
F.
de Groot
, “
High-resolution x-ray emission and x-ray absorption spectroscopy
,”
Chem. Rev.
101
,
1779
1808
(
2001
).
25.
F.
de Groot
, “
Multiplet effects in X-ray spectroscopy
,”
Coord. Chem. Rev.
249
,
31
63
(
2005
).
26.
F.
de Groot
and
A.
Kotani
,
Core Level Spectroscopy of Solids
(
CRC Press
,
Boca Raton
,
2008
).
27.
M.
Varela
,
M. P.
Oxley
,
W.
Luo
,
J.
Tao
,
M.
Watanabe
,
A. R.
Lupini
,
S. T.
Pantelides
, and
S. J.
Pennycook
, “
Atomic-resolution imaging of oxidation states in manganites
,”
Phys. Rev. B
79
,
085117
(
2009
).
28.
S.
Zhang
,
K. J. T.
Livi
,
A.-C.
Gaillot
,
A. T.
Stone
, and
D. R.
Veblen
, “
Determination of manganese valence states in (Mn3+, Mn4+) minerals by electron energy-loss spectroscopy
,”
Am. Mineral.
95
,
1741
1746
(
2010
).
29.
F.
Schönewald
,
M.
Eckhoff
,
M.
Baumung
,
M.
Risch
,
P. E.
Blöchl
,
J.
Behler
, and
C. A.
Volkert
, “
A criticial view on eg occupancy as a descriptor for oxygen evolution catalytic activity in LiMn2O4 nanoparticles
,” arXiv:2007.04217 [cond-mat.mtrl-sci] (
2020
).
30.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
31.
V. L.
Deringer
,
M. A.
Caro
, and
G.
Csányi
, “
Machine learning interatomic potentials as emerging tools for materials science
,”
Adv. Mater.
31
,
1902765
(
2019
).
32.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
33.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
34.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
35.
J.
Behler
, “
First principles neural network potentials for reactive simulations of large molecular and condensed systems
,”
Angew. Chem., Int. Ed.
56
,
12828
12840
(
2017
).
36.
J.
Behler
,
R.
Martoňák
,
D.
Donadio
, and
M.
Parrinello
, “
Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential
,”
Phys. Rev. Lett.
100
,
185501
(
2008
).
37.
N.
Artrith
,
B.
Hiller
, and
J.
Behler
, “
Neural network potentials for metals and oxides—First applications to copper clusters at zinc oxide
,”
Phys. Status Solidi B
250
,
1191
1203
(
2013
).
38.
M.
Gastegger
and
P.
Marquetand
, “
High-dimensional neural network potentials for organic reactions and an improved training algorithm
,”
J. Chem. Theory Comput.
11
,
2187
2198
(
2015
).
39.
T.
Morawietz
,
A.
Singraber
,
C.
Dellago
, and
J.
Behler
, “
How van der Waals interactions determine the unique properties of water
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
8368
8373
(
2016
).
40.
M.
Hellström
and
J.
Behler
, “
Concentration-dependent proton transfer mechanisms in aqueous NaOH solutions: From acceptor-driven to donor-driven and back
,”
J. Phys. Chem. Lett.
7
,
3302
3306
(
2016
).
41.
S. K.
Natarajan
and
J.
Behler
, “
Neural network molecular dynamics simulations of solid-liquid interfaces: Water at low-index copper surfaces
,”
Phys. Chem. Chem. Phys.
18
,
28704
28725
(
2016
).
42.
M.
Eckhoff
and
J.
Behler
, “
From molecular fragments to the bulk: Development of a neural network potential for MOF-5
,”
J. Chem. Theory Comput.
15
,
3793
3809
(
2019
).
43.
N.
Artrith
,
T.
Morawietz
, and
J.
Behler
, “
High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
,”
Phys. Rev. B
83
,
153101
(
2011
).
44.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
, “
Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
,”
Phys. Rev. B
92
,
045131
(
2015
).
45.
S.
Houlding
,
S. Y.
Liem
, and
P. L. A.
Popelier
, “
A polarizable high-rank quantum topological electrostatic potential developed using neural networks: Molecular dynamics simulations on the hydrogen fluoride dimer
,”
Int. J. Quantum Chem.
107
,
2817
2827
(
2007
).
46.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
47.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Machine learning of molecular electronic properties in chemical compound space
,”
New J. Phys.
15
,
095003
(
2013
).
48.
Z.
Li
,
N.
Omidvar
,
W. S.
Chin
,
E.
Robb
,
A.
Morris
,
L.
Achenie
, and
H.
Xin
, “
Machine-learning energy gaps of porphyrins with molecular graph representations
,”
J. Phys. Chem. A
122
,
4571
4578
(
2018
).
49.
J. P.
Janet
,
S.
Ramesh
,
C.
Duan
, and
H. J.
Kulik
, “
Accurate multiobjective design in a space of millions of transition metal complexes with neural-network-driven efficient global optimization
,”
ACS Cent. Sci.
6
,
513
524
(
2020
).
50.
M.
Rupp
,
R.
Ramakrishnan
, and
O. A.
von Lilienfeld
, “
Machine learning for quantum mechanical properties of atoms in molecules
,”
J. Phys. Chem. Lett.
6
,
3309
(
2015
).
51.
K.
Schütt
,
M.
Gastegger
,
A.
Tkatchenko
,
K.-R.
Müller
, and
R.
Maurer
, “
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
,”
Nat. Commun.
10
,
5024
(
2019
).
52.
J. P.
Janet
and
H. J.
Kulik
, “
Predicting electronic structure properties of transition metal complexes with neural networks
,”
Chem. Sci.
8
,
5137
5152
(
2017
).
53.
J. P.
Janet
and
H. J.
Kulik
, “
Resolving transition metal chemical space: Feature selection for machine learning and structure–property relationships
,”
J. Phys. Chem. A
121
,
8939
8954
(
2017
).
54.
J. P.
Janet
,
L.
Chan
, and
H. J.
Kulik
, “
Accelerating chemical discovery with machine learning: Simulated evolution of spin crossover complexes with an artificial neural network
,”
J. Phys. Chem. Lett.
9
,
1064
1071
(
2018
).
55.
M. G.
Taylor
,
T.
Yang
,
S.
Lin
,
A.
Nandy
,
J. P.
Janet
,
C.
Duan
, and
H. J.
Kulik
, “
Seeing is believing: Experimental spin states from machine learning model structure predictions
,”
J. Phys. Chem. A
124
,
3286
3299
(
2020
).
56.
M.
Sotoudeh
,
S.
Rajpurohit
,
P.
Blöchl
,
D.
Mierwaldt
,
J.
Norpoth
,
V.
Roddatis
,
S.
Mildner
,
B.
Kressdorf
,
B.
Ifland
, and
C.
Jooss
, “
Electronic structure of Pr1−xCaxMnO3
,”
Phys. Rev. B
95
,
235150
(
2017
).
57.
E.
McCafferty
,
Introduction to Corrosion Science
(
Springer
,
New York
,
2010
).
58.
M. F.
Perutz
,
A. J.
Wilkinson
,
M.
Paoli
, and
G. G.
Dodson
, “
The stereochemical mechanism of the cooperative effects in hemoglobin revisited
,”
Annu. Rev. Biophys. Biomol. Struct.
27
,
1
34
(
1998
).
59.
T.
Morawietz
,
V.
Sharma
, and
J.
Behler
, “
A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges
,”
J. Chem. Phys.
136
,
064103
(
2012
).
60.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
, “
Multilayer feedforward networks are universal approximators
,”
Neural Networks
2
,
359
366
(
1989
).
61.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
62.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
63.
P. E.
Blöchl
, CP-PAW, https://www2.pt.tu-clausthal.de/paw/; accessed 28 September 2016.
64.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
65.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
66.
J.
Behler
, RuNNer, http://gitlab.com/TheochemGoettingen/RuNNer; accessed 22 August 2019.
67.
R. E.
Kalman
, “
A new approach to linear filtering and prediction problems
,”
J. Basic Eng.
82
,
35
45
(
1960
).
68.
T. B.
Blank
,
S. D.
Brown
,
A. W.
Calhoun
, and
D. J.
Doren
, “
Neural network models of potential energy surfaces
,”
J. Chem. Phys.
103
,
4129
4137
(
1995
).
69.
X.
Glorot
and
Y.
Bengio
, “
Understanding the difficulty of training deep feedforward neural networks
,”
J. Mach. Learn. Res.
9
,
249
256
(
2010
).
70.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
71.
LAMMPS—Large-scale atomic/molecular massively parallel simulator, http://lammps.sandia.gov; accessed 7 August 2019.
72.
A.
Singraber
, n2p2—A neural network potential package, https://github.com/CompPhysVienna/n2p2; accessed 9 December 2019.
73.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
74.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
75.
D. J.
Wales
and
J. P. K.
Doye
, “
Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms
,”
J. Phys. Chem. A
101
,
5111
5116
(
1997
).
76.
J.
Kanamori
, “
Crystal distortion in magnetic compounds
,”
J. Appl. Phys.
31
,
S14
S23
(
1960
).
77.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
78.
Y.
Sun
,
H.
Liao
,
J.
Wang
,
B.
Chen
,
S.
Sun
,
S. J. H.
Ong
,
S.
Xi
,
C.
Diao
,
Y.
Du
,
J.-O.
Wang
,
M. B. H.
Breese
,
S.
Li
,
H.
Zhang
, and
Z. J.
Xu
, “
Covalency competition dominates the water oxidation structure-activity relationship on spinel oxides
,”
Nat. Catal.
3
,
554
563
(
2020
).
79.
G.
Mills
and
H.
Jónsson
, “
Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems
,”
Phys. Rev. Lett.
72
,
1124
1127
(
1994
).
80.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
,
Classical and Quantum Dynamics in Condensed Phase Simulations
(
World Scientific
,
Singapore
,
1998
).
81.
M. S. S.
Challa
,
D. P.
Landau
, and
K.
Binder
, “
Finite-size effects at temperature-driven first-order transitions
,”
Phys. Rev. B
34
,
1841
1852
(
1986
).
82.
K.
Binder
, “
Theory of first-order phase transitions
,”
Rep. Prog. Phys.
50
,
783
859
(
1987
).
83.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders College
,
New York
,
1976
).
84.
J.
Bisquert
, “
Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states
,”
Phys. Chem. Chem. Phys.
10
,
3175
3194
(
2008
).
85.
J.
Bisquert
, “
Chemical diffusion coefficient of electrons in nanostructured semiconductor electrodes and dye-sensitized solar cells
,”
J. Phys. Chem. B
108
,
2323
2332
(
2004
).
86.
H.
Mehrer
,
Diffusion in Solids
(
Springer
,
Berlin
,
2007
).
87.
J. C.
Phillips
,
Physics of High-Tc Superconductors
(
Academic Press
,
San Diego
,
1989
).

Supplementary Material

You do not currently have access to this content.