Density matrix perturbation theory (DMPT) is known as a promising alternative to the Rayleigh–Schrödinger perturbation theory, in which the sum-over-states (SOS) is replaced by algorithms with perturbed density matrices as the input variables. In this article, we formulate and discuss three types of DMPT, with two of them based only on density matrices: the approach of Kussmann and Ochsenfeld [J. Chem. Phys. 127, 054103 (2007)] is reformulated via the Sylvester equation and the recursive DMPT of Niklasson and Challacombe [Phys. Rev. Lett. 92, 193001 (2004)] is extended to the hole-particle canonical purification (HPCP) from Truflandier et al. [J. Chem. Phys. 144, 091102 (2016)]. A comparison of the computational performances shows that the aforementioned methods outperform the standard SOS. The HPCP-DMPT demonstrates stable convergence profiles but at a higher computational cost when compared to the original recursive polynomial method.

1.
A.
Weiße
,
G.
Wellein
,
A.
Alvermann
, and
H.
Fehske
,
Rev. Mod. Phys.
78
,
275
(
2006
).
2.
R. M.
Stevens
,
R. M.
Pitzer
, and
W. N.
Lipscomb
,
J. Chem. Phys.
38
,
550
(
1963
).
3.
J.
Gerratt
and
I. M.
Mills
,
J. Chem. Phys.
49
,
1719
(
1968
).
4.
J.
Gerratt
and
I. M.
Mills
,
J. Chem. Phys.
49
,
1730
(
1968
).
5.
K.
Thomsen
and
P.
Swanstrøm
,
Mol. Phys.
26
,
735
(
1973
).
6.
R.
Ditchfield
,
Mol. Phys.
27
,
789
(
1974
).
7.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
,
Int. J. Quantum Chem.
16
,
225
(
1979
).
8.
M.
Frisch
,
M.
Head-Gordon
, and
J.
Pople
,
Chem. Phys.
141
,
189
(
1990
).
9.
Y.
Osamura
,
Y.
Yamaguchi
,
P.
Saxe
,
D. J.
Fox
,
M. A.
Vincent
, and
H. F.
Schaefer
,
J. Mol. Struct.: THEOCHEM
103
,
183
(
1983
).
10.
R.
McWeeny
,
Phys. Rev.
126
,
1028
(
1962
).
11.
R.
McWeeny
,
Chem. Phys. Lett.
1
,
567
(
1968
).
12.
G.
Diercksen
and
R.
McWeeny
,
J. Chem. Phys.
44
,
3554
(
1966
).
13.
J. A.
Pople
,
Trans. Faraday Soc.
49
,
1375
(
1953
).
14.
R.
Pariser
and
R. G.
Parr
,
J. Chem. Phys.
21
,
767
(
1953
).
15.
R.
Pariser
and
R. G.
Parr
,
J. Chem. Phys.
21
,
466
(
1953
).
16.
R.
Moccia
,
Theor. Chim. Acta
8
,
192
(
1967
).
17.
R.
Moccia
,
Chem. Phys. Lett.
5
,
260
(
1970
).
18.
J. L.
Dodds
,
R.
McWeeny
, and
A. J.
Sadlej
,
Mol. Phys.
34
,
1779
(
1977
).
19.
J. L.
Dodds
,
R.
McWeeny
,
W. T.
Raynes
, and
J. P.
Riley
,
Mol. Phys.
33
,
611
(
1977
).
20.
K.
Woliński
and
A. J.
Sadlej
,
Mol. Phys.
41
,
1419
(
1980
).
21.
K.
Wolinski
,
J. F.
Hinton
, and
P.
Pulay
,
J. Am. Chem. Soc.
112
,
8251
(
1990
).
22.
C.
Ochsenfeld
and
M.
Head-Gordon
,
Chem. Phys. Lett.
270
,
399
(
1997
).
23.
X.-P.
Li
,
R. W.
Nunes
, and
D.
Vanderbilt
,
Phys. Rev. B
47
,
10891
(
1993
).
24.
R.
McWeeny
,
Proc. R. Soc. London, Ser. A
235
,
496
(
1956
).
25.
R.
McWeeny
,
Rev. Mod. Phys.
32
,
335
(
1960
).
26.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
127
,
054103
(
2007
).
27.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
127
,
204103
(
2007
).
28.
H.
Larsen
,
T.
Helgaker
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
115
,
10344
(
2001
).
29.
S.
Coriani
,
S.
Høst
,
B.
Jansík
,
L.
Thøgersen
,
J.
Olsen
,
P.
Jørgensen
,
S.
Reine
,
F.
Pawłowski
,
T.
Helgaker
, and
P.
Sałek
,
J. Chem. Phys.
126
,
154108
(
2007
).
30.
T.
Helgaker
,
H.
Larsen
,
J.
Olsen
, and
P.
Jørgensen
,
Chem. Phys. Lett.
327
,
397
(
2000
).
31.
A. M. N.
Niklasson
and
M.
Challacombe
,
Phys. Rev. Lett.
92
,
193001
(
2004
).
32.
A. M. N.
Niklasson
,
V.
Weber
, and
M.
Challacombe
,
J. Chem. Phys.
123
,
044107
(
2005
).
33.
A. M. N.
Niklasson
and
V.
Weber
,
J. Chem. Phys.
127
,
064105
(
2007
).
34.
A. M. N.
Niklasson
,
Phys. Rev. B
66
,
155115
(
2002
).
35.
M. J.
Cawkwell
,
E. J.
Sanville
,
S. M.
Mniszewski
, and
A. M. N.
Niklasson
,
J. Chem. Theory Comput.
8
,
4094
(
2012
).
36.
M. J.
Cawkwell
,
M. A.
Wood
,
A. M. N.
Niklasson
, and
S. M.
Mniszewski
,
J. Chem. Theory Comput.
10
,
5391
(
2014
).
37.
V.
Weber
,
A. M. N.
Niklasson
, and
M.
Challacombe
,
Phys. Rev. Lett.
92
,
193002
(
2004
).
38.
V.
Weber
,
A. M. N.
Niklasson
, and
M.
Challacombe
,
J. Chem. Phys.
123
,
044106
(
2005
).
39.
L. A.
Truflandier
,
R. M.
Dianzinga
, and
D. R.
Bowler
,
J. Chem. Phys.
144
,
091102
(
2016
).
40.
S.
Goedecker
and
M.
Teter
,
Phys. Rev. B
51
,
9455
(
1995
).
41.
R.
Baer
and
M.
Head-Gordon
,
Phys. Rev. Lett.
79
,
3962
(
1997
).
42.
J. O.
Hirschfelder
,
W. B.
Brown
, and
S. T.
Epstein
,
Advances in Quantum Chemistry
(
Elsevier
,
1964
), Vol. 1, pp.
255
374
.
43.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons, Ltd.
,
London
,
2000
).
44.
P.
Pulay
,
J. Chem. Phys.
78
,
5043
(
1983
).
45.
H.
Sekino
and
R. J.
Bartlett
,
J. Chem. Phys.
85
,
976
(
1986
).
46.
S. P.
Karna
and
M.
Dupuis
,
J. Comput. Chem.
12
,
487
(
1991
).
47.
F.
Furche
,
J. Chem. Phys.
114
,
5982
(
2001
).
48.
M.
Kobayashi
,
T.
Touma
, and
H.
Nakai
,
J. Chem. Phys.
136
,
084108
(
2012
).
49.
J.
Kußmann
,
Development of Linear Scaling ab initio Methods based on Electron Density Matrices
(
Universität Tübingen
,
Germany
,
2006
).
50.

The passing from [D,[H,D(1)]]+D,[H(1),D]=0 to Eq. (32) required the use of the identity: [A, [B, C]] = [B, [A, C]] + [C, [B, A]].

51.
J.
Brandts
, in
Large-Scale Scientific Computing
, edited by
S.
Margenov
,
J.
Waśniewski
, and
P.
Yalamov
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2001
), pp.
462
470
.
52.
V.
Simoncini
,
SIAM Rev.
58
,
377
(
2016
).
53.

Note that the special case where B = At in the Sylvester equation AX + XB = C is also referred to as the Lyapunov equation in litterature.52 

54.
R. H.
Bartels
and
G. W.
Stewart
,
Commun. ACM
15
,
820
(
1972
).
55.
Y.
Saad
,
Iterative Methods for Sparse Linear Systems
, Other Titles in Applied Mathematics (
Society for Industrial and Applied Mathematics
,
2003
).
56.
J.
Nocedal
and
S.
Wright
,
Numerical Optimization
, Springer Series in Operations Research and Financial Engineering, 2nd ed. (
Springer-Verlag
,
New York
,
2006
).
57.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
58.
D. M.
Wood
and
A.
Zunger
,
J. Phys. A: Math. Gen.
18
,
1343
(
1985
).
59.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
60.
M. P.
Teter
,
M. C.
Payne
, and
D. C.
Allan
,
Phys. Rev. B
40
,
12255
(
1989
).
61.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
,
Rev. Mod. Phys.
64
,
1045
(
1992
).
62.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
63.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
64.
X.
Gonze
,
Phys. Rev. A
52
,
1096
(
1995
).
65.
X.
Gonze
,
Phys. Rev. B
55
,
10337
(
1997
).
66.
S.
Baroni
,
P.
Giannozzi
, and
A.
Testa
,
Phys. Rev. Lett.
58
,
1861
(
1987
).
67.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
68.
M.
Lazzeri
and
F.
Mauri
,
Phys. Rev. Lett.
90
,
036401
(
2003
).
69.
M.
Lazzeri
and
F.
Mauri
,
Phys. Rev. B
68
,
161101
(
2003
).
70.
A. M. N.
Niklasson
, in
Linear-Scaling Techniques in Computational Chemistry and Physics, Challenges and Advances in Computational Chemistry and Physics No. 13
, edited by
R.
Zalesny
,
M. G.
Papadopoulos
,
P. G.
Mezey
, and
J.
Leszczynski
(
Springer Netherlands
,
2011
), pp.
439
473
.
71.
S.
Geršgorin
,
Proc. USSR Acad. Sci.
51
,
749
(
1931
); available at http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=5235&option_lang=eng.
72.

Even if obvious, we recall that: sign(x) = 2Θ(x) − 1. The TC2 formulation of Eq. (40a) using Θ(x) instead of the sign(x) is only useful when compared with the HPCP polynomial (43).

73.
E. H.
Rubensson
,
SIAM J. Sci. Comput.
34
,
B1
(
2012
).
74.
E. H.
Rubensson
,
E.
Rudberg
, and
P.
Sałek
,
J. Chem. Phys.
128
,
074106
(
2008
).
75.
A. H. R.
Palser
and
D. E.
Manolopoulos
,
Phys. Rev. B
58
,
12704
(
1998
).
76.
D. A.
Mazziotti
,
Phys. Rev. E
68
,
066701
(
2003
).
77.

Maybe it is worth to recall that for square matrices of size M × M, the number of floating-point operations (FLOPs) for dense matrix-matrix multiplication scales as O(M3), compare to O(M2) for all the other matrix operations involved in those perturbed recursions, e.g. scalar multiplication, addition and transposition; available at http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=5235&option_lang=eng.

78.

For k odd, exactly (k + 1)/2 MMs must be performed for the TC2 vs (3k + 3)/2 for the HPCP. For k even, it is found (k + 2)/2 vs (3k + 4)/2 MMs, respectively.

79.
T. A.
Albright
,
J. K.
Burdett
, and
M.
Whangbo
,
Orbital Interactions in Chemistry
(
John Wiley & Sons, Ltd.
,
1985
).
80.
E.
Rudberg
and
E. H.
Rubensson
,
J. Phys.: Condens. Matter
23
,
075502
(
2011
).
81.
A.
Nakata
,
J. S.
Baker
,
S. Y.
Mujahed
,
J. T. L.
Poulton
,
S.
Arapan
,
J.
Lin
,
Z.
Raza
,
S.
Yadav
,
L.
Truflandier
,
T.
Miyazaki
, and
D. R.
Bowler
,
J. Chem. Phys.
152
,
164112
(
2020
).
You do not currently have access to this content.