Halogen atoms are widely used in drug molecules to improve their binding affinity for the receptor proteins. Many of the examples involve “halogen bonding” between the molecule and the binding site, which is a directional interaction between a halogen atom and a nucleophilic atom. Such an interaction is induced by an electron cloud shift of the halogen atom toward its covalently bonded neighbor to form the σ-bond, leaving a small electrostatic positive region opposite to the bond called the “σ-hole.” To mimic the effect of the σ-hole in the CHARMM non-polarizable force field, recently CGenFF added a positively charged massless particle to halogen atoms, positioned at the opposite side of the carbon–halogen bond. This particle is referred to as a lone pair (LP) particle because it uses the lone pair implementation in the CHARMM force field. Here, we have added support for LP particles to ffTK, an automated force field parameterization toolkit widely distributed as a plugin to the molecular visualization software VMD. We demonstrate the updated optimization process using an example halogenated drug molecule, AT130, which is a capsid assembly modulator targeting the hepatitis B virus. Our results indicate that parameterization with the LP particle significantly improves the accuracy of the electrostatic response of the molecule, especially around the halogen atom. Although the inclusion of the LP particle does not produce a prominent effect on the interactions between the molecule and its target protein, the protein–ligand binding performance is greatly improved by optimization of the parameters.

1.
G.
Cavallo
,
P.
Metrangolo
,
R.
Milani
,
T.
Pilati
,
A.
Priimagi
,
G.
Resnati
, and
G.
Terraneo
, “
The halogen bond
,”
Chem. Rev.
116
,
2478
2601
(
2016
).
2.
S.
Buchini
,
A.
Buschiazzo
, and
S. G.
Withers
, “
A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors
,”
Angew. Chem., Int. Ed.
47
,
2700
2703
(
2008
).
3.
A. C. L.
Leite
,
D. R. d. M.
Moreira
,
M. V. d. O.
Cardoso
,
M. Z.
Hernandes
,
V. R.
Alves Pereira
,
R. O.
Silva
,
A. C.
Kiperstok
,
M. d. S.
Lima
, and
M. B. P.
Soares
, “
Synthesis, Cruzain docking, and in vitro studies of aryl-4-oxothiazolylhydrazones against Trypanosoma cruzi
,”
ChemMedChem
2
,
1339
1345
(
2007
).
4.
B. L.
Grasberger
,
T.
Lu
,
C.
Schubert
,
D. J.
Parks
,
T. E.
Carver
,
H. K.
Koblish
,
M. D.
Cummings
,
L. V.
LaFrance
,
K. L.
Milkiewicz
,
R. R.
Calvo
,
D.
Maguire
,
J.
Lattanze
,
C. F.
Franks
,
S.
Zhao
,
K.
Ramachandren
,
G. R.
Bylebyl
,
M.
Zhang
,
C. L.
Manthey
,
E. C.
Petrella
,
M. W.
Pantoliano
,
I. C.
Deckman
,
J. C.
Spurlino
,
A. C.
Maroney
,
B. E.
Tomczuk
,
C. J.
Molloy
, and
R. F.
Bone
, “
Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells
,”
J. Med. Chem.
48
,
909
912
(
2005
).
5.
D. J.
Parks
,
L. V.
Lafrance
,
R. R.
Calvo
,
K. L.
Milkiewicz
,
V.
Gupta
,
J.
Lattanze
,
K.
Ramachandren
,
T. E.
Carver
,
E. C.
Petrella
,
M. D.
Cummings
,
D.
Maguire
,
B. L.
Grasberger
, and
T.
Lu
, “
1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction: Discovery and SAR
,”
Bioorg. Med. Chem. Lett.
15
,
765
770
(
2005
).
6.
O.
Fedorov
,
K.
Huber
,
A.
Eisenreich
,
P.
Filippakopoulos
,
O.
King
,
A. N.
Bullock
,
D.
Szklarczyk
,
L. J.
Jensen
,
D.
Fabbro
,
J.
Trappe
,
U.
Rauch
,
F.
Bracher
, and
S.
Knapp
, “
Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing
,”
Chem. Biol.
18
,
67
76
(
2011
).
7.
L. A.
Hardegger
,
B.
Kuhn
,
B.
Spinnler
,
L.
Anselm
,
R.
Ecabert
,
M.
Stihle
,
B.
Gsell
,
R.
Thoma
,
J.
Diez
,
J.
Benz
,
J.-M.
Plancher
,
G.
Hartmann
,
Y.
Isshiki
,
K.
Morikami
,
N.
Shimma
,
W.
Haap
,
D. W.
Banner
, and
F.
Diederich
, “
Halogen bonding at the active sites of human cathepsin L and MEK1 kinase: Efficient interactions in different environments
,”
ChemMedChem
6
,
2048
2054
(
2011
).
8.
Á. M.
Montaña
, “
The σ and π holes. the halogen and tetrel bondings: Their nature, importance and chemical, biological and medicinal implications
,”
ChemistrySelect
2
,
9094
9112
(
2017
).
9.
M. R.
Scholfield
,
C. M. V.
Zanden
,
M.
Carter
, and
P. S.
Ho
, “
Halogen bonding (X-bonding): A biological perspective
,”
Protein Sci.
22
,
139
152
(
2013
).
10.
K.
Naumann
, “
Influence of chlorine substituents on biological activity of chemicals
,”
J. Prakt. Chem.
341
,
417
435
(
1999
).
11.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
, and
A. D.
MacKerell
, Jr.
, “
CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
,”
J. Comput. Chem.
31
,
671
690
(
2010
).
12.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
13.
W. L.
Jorgensen
and
J.
Tirado-Rives
, “
The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin
,”
J. Am. Chem. Soc.
110
,
1657
1666
(
1988
).
14.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
15.
W. R.
Scott
,
P. H.
Hünenberger
,
I. G.
Tironi
,
A. E.
Mark
,
S. R.
Billeter
,
J.
Fennen
,
A. E.
Torda
,
T.
Huber
,
P.
Krüger
, and
W. F.
van Gunsteren
, “
The GROMOS software for biomolecular simulation: GROMOS05
,”
J. Comput. Chem.
26
,
1719
1751
(
2005
).
16.
A. N. S.
Adluri
,
J. N.
Murphy
,
T.
Tozer
, and
C. N.
Rowley
, “
Polarizable force field with a σ-hole for liquid and aqueous bromomethane
,”
J. Phys. Chem. B
119
,
13422
13432
(
2015
).
17.
I.
Soteras Gutiérrez
,
F.-Y.
Lin
,
K.
Vanommeslaeghe
,
J. A.
Lemkul
,
K. A.
Armacost
,
C. L.
Brooks
, and
A. D.
MacKerell
, Jr.
, “
Parametrization of halogen bonds in the CHARMM general force field: Improved treatment of ligand-protein interactions
,”
Bioorg. Med. Chem.
24
,
4812
4825
(
2016
).
18.
E.
Harder
,
W.
Damm
,
J.
Maple
,
C.
Wu
,
M.
Reboul
,
J. Y.
Xiang
,
L.
Wang
,
D.
Lupyan
,
M. K.
Dahlgren
,
J. L.
Knight
,
J. W.
Kaus
,
D. S.
Cerutti
,
G.
Krilov
,
W. L.
Jorgensen
,
R.
Abel
, and
R. A.
Friesner
, “
OPLS3: A force field providing broad coverage of drug-like small molecules and proteins
,”
J. Chem. Theory Comput.
12
,
281
296
(
2016
).
19.
M. A. A.
Ibrahim
, “
Molecular mechanical study of halogen bonding in drug discovery
,”
J. Comput. Chem.
32
,
2564
2574
(
2011
).
20.
M. A. A.
Ibrahim
, “
Molecular mechanical perspective on halogen bonding
,”
J. Mol. Model.
18
,
4625
4638
(
2012
).
21.
X.
Mu
,
Q.
Wang
,
L.-P.
Wang
,
S. D.
Fried
,
J.-P.
Piquemal
,
K. N.
Dalby
, and
P.
Ren
, “
Modeling organochlorine compounds and the σ-hole effect using a polarizable multipole force field
,”
J. Phys. Chem. B
118
,
6456
6465
(
2014
).
22.
F.-Y.
Lin
and
A. D.
MacKerell
, Jr.
, “
Do halogen–hydrogen bond donor interactions dominate the favorable contribution of halogens to ligand–protein binding?
,”
J. Phys. Chem. B
121
,
6813
6821
(
2017
).
23.
F.-Y.
Lin
and
A. D.
MacKerell
, Jr.
, “
Improved modeling of halogenated ligand-protein interactions using the Drude polarizable and CHARMM additive empirical force fields
,”
J. Chem. Inf. Model.
59
,
215
228
(
2019
).
24.
C. G.
Mayne
,
J.
Saam
,
K.
Schulten
,
E.
Tajkhorshid
, and
J. C.
Gumbart
, “
Rapid parameterization of small molecules using the force field toolkit
,”
J. Comput. Chem.
34
,
2757
2770
(
2013
).
25.
J. C.
Gumbart
,
M.
Beeby
,
G. J.
Jensen
, and
B.
Roux
, “
Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations
,”
PLoS Comput. Biol.
10
,
e1003475
(
2014
).
26.
A.
Pavlova
and
J. C.
Gumbart
, “
Parametrization of macrolide antibiotics using the force field toolkit
,”
J. Comput. Chem.
36
,
2052
2063
(
2015
).
27.
L.
Han
,
L.
Yan
,
M.
Wang
,
K.
Wang
,
L.
Fang
,
J.
Zhou
,
J.
Fang
,
F.
Ren
, and
X.
Lu
, “
Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils
,”
Chem. Mater.
30
,
5561
5572
(
2018
).
28.
Y.-C.
Chiang
,
O.
Levsh
,
C. K.
Lam
,
J.-K.
Weng
, and
Y.
Wang
, “
Structural and dynamic basis of substrate permissiveness in hydroxycinnamoyltransferase (HCT)
,”
PLoS Comput. Biol.
14
,
e1006511
(
2018
).
29.
Q.
Chen
,
M. M.
Wells
,
P.
Arjunan
,
T. S.
Tillman
,
A. E.
Cohen
,
Y.
Xu
, and
P.
Tang
, “
Structural basis of neurosteroid anesthetic action on GABAA receptors
,”
Nat. Commun.
9
,
3972
(
2018
).
30.
J. A.
Coleman
,
D.
Yang
,
Z.
Zhao
,
P.-C.
Wen
,
C.
Yoshioka
,
E.
Tajkhorshid
, and
E.
Gouaux
, “
Serotonin transporter-ibogaine complexes illuminate mechanisms of inhibition and transport
,”
Nature
569
,
141
145
(
2019
).
31.
Y.-C.
Chiang
,
M. T.
Wong
, and
J. W.
Essex
, “
Molecular dynamics simulations of antibiotic ceftaroline at the allosteric site of penicillin-binding protein 2a (PBP2a)
,”
Isr. J. Chem.
60
,
754
763
(
2020
).
32.
J. J.
Feld
,
D.
Colledge
,
V.
Sozzi
,
R.
Edwards
,
M.
Littlejohn
, and
S. A.
Locarnini
, “
The phenylpropenamide derivative AT-130 blocks HBV replication at the level of viral RNA packaging
,”
Antiviral Res.
76
,
168
177
(
2007
).
33.
K.
Deres
,
C. H.
Schröder
,
A.
Paessens
,
S.
Goldmann
,
H. J.
Hacker
,
O.
Weber
,
T.
Krämer
,
U.
Niewöhner
,
U.
Pleiss
,
J.
Stoltefuss
 et al, “
Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids
,”
Science
299
,
893
896
(
2003
).
34.
C.
Bourne
,
S.
Lee
,
B.
Venkataiah
,
A.
Lee
,
B.
Korba
,
M. G.
Finn
, and
A.
Zlotnick
, “
Small-molecule effectors of hepatitis B virus capsid assembly give insight into virus life cycle
,”
J. Virol.
82
,
10262
10270
(
2008
).
35.
W. E.
Delaney
,
R.
Edwards
,
D.
Colledge
,
T.
Shaw
,
P.
Furman
,
G.
Painter
, and
S.
Locarnini
, “
Phenylpropenamide derivatives AT-61 and AT-130 inhibit replication of wild-type and lamivudine-resistant strains of hepatitis B virus in vitro
,”
Antimicrob. Agents Chemotheraphy
46
,
3057
3060
(
2002
).
36.
M. R.
Campagna
,
F.
Liu
,
R.
Mao
,
C.
Mills
,
D.
Cai
,
F.
Guo
,
X.
Zhao
,
H.
Ye
,
A.
Cuconati
,
H.
Guo
,
J.
Chang
,
X.
Xu
,
T. M.
Block
, and
J.-T.
Guo
, “
Sulfamoylbenzamide derivatives inhibit the assembly of hepatitis B virus nucleocapsids
,”
J. Virol.
87
,
6931
6942
(
2013
).
37.
Z.
Zhou
,
T.
Hu
,
X.
Zhou
,
S.
Wildum
,
F.
Garcia-Alcalde
,
Z.
Xu
,
D.
Wu
,
Y.
Mao
,
X.
Tian
,
Y.
Zhou
,
F.
Shen
,
Z.
Zhang
,
G.
Tang
,
I.
Najera
,
G.
Yang
,
H. C.
Shen
,
J. A.
Young
, and
N.
Qin
, “
Heteroaryldihydropyrimidine (HAP) and sulfamoylbenzamide (SBA) inhibit hepatitis B virus replication by different molecular mechanisms
,”
Sci. Rep.
7
,
42374
(
2017
).
38.
O.
Sari
,
S.
Boucle
,
B. D.
Cox
,
T.
Ozturk
,
O. O.
Russell
,
L.
Bassit
,
F.
Amblard
, and
R. F.
Schinazi
, “
Synthesis of sulfamoylbenzamide derivatives as HBV capsid assembly effector
,”
Eur. J. Med. Chem.
138
,
407
421
(
2017
).
39.
A. G.
Cole
, “
Modulators of HBV capsid assembly as an approach to treating hepatitis B virus infection
,”
Curr. Opin. Pharmacol.
30
,
131
137
(
2016
).
40.
L.
Yang
,
F.
Liu
,
X.
Tong
,
D.
Hoffmann
,
J.
Zuo
, and
M.
Lu
, “
Treatment of chronic hepatitis B virus infection using small molecule modulators of nucleocapsid assembly: Recent advances and perspectives
,”
ACS Infect. Dis.
5
,
713
724
(
2019
).
41.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
42.
K.
Vanommeslaeghe
and
A. D.
MacKerell
, Jr.
, “
Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing
,”
J. Chem. Inf. Model.
52
,
3144
3154
(
2012
).
43.
K.
Vanommeslaeghe
,
E. P.
Raman
, and
A. D.
MacKerell
, Jr.
, “
Automation of the CHARMM general force field (CGenFF) II: Assignment of bonded parameters and partial atomic charges
,”
J. Chem. Inf. Model.
52
,
3155
3168
(
2012
).
44.
M.
Frisch
,
G.
Trucks
,
H.
Schlegel
,
G.
Scuseria
,
M.
Robb
,
J.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G.
Petersson
,
H.
Nakatsuji
 et al, Gaussian 16, revision A. 03,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
45.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
46.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kalé
, and
K.
Schulten
, “
Scalable molecular dynamics with NAMD
,”
J. Comput. Chem.
26
,
1781
1802
(
2005
).
47.
J. A.
Nelder
and
R.
Mead
, “
A simplex method for function minimization
,”
Comput. J.
7
,
308
313
(
1965
).
48.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
, 2nd ed. (
Cambridge University Press
,
New York
,
1992
).
49.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
,”
J. Phys. Chem. B
113
,
6378
6396
(
2009
).
50.
J. C.
Phillips
,
D. J.
Hardy
,
J. D. C.
Maia
,
J. E.
Stone
,
J. V.
Ribeiro
,
R. C.
Bernardi
,
R.
Buch
,
G.
Fiorin
,
J.
Hénin
,
W.
Jiang
,
R.
McGreevy
,
M. C. R.
Melo
,
B. K.
Radak
,
R. D.
Skeel
,
A.
Singharoy
,
Y.
Wang
,
B.
Roux
,
A.
Aksimentiev
,
Z.
Luthey-Schulten
,
L. V.
Kalé
,
K.
Schulten
,
C.
Chipot
, and
E.
Tajkhorshid
, “
Scalable molecular dynamics on CPU and GPU architectures with NAMD
,”
J. Chem. Phys.
153
,
044130
(
2020
).
51.
J.
Huang
,
S.
Rauscher
,
G.
Nawrocki
,
T.
Ran
,
M.
Feig
,
B. L.
de Groot
,
H.
Grubmüller
, and
A. D.
MacKerell
, Jr.
, “
CHARMM36m: An improved force field for folded and intrinsically disordered proteins
,”
Nat. Methods
14
,
71
73
(
2017
).
52.
S. E.
Feller
,
Y.
Zhang
,
R. W.
Pastor
, and
B. R.
Brooks
, “
Constant pressure molecular dynamics simulation: The Langevin piston method
,”
J. Chem. Phys.
103
,
4613
4621
(
1995
).
53.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N · log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).

Supplementary Material

You do not currently have access to this content.