CO adsorbed to NaCl(100) exhibits perhaps the weakest possible coupling between the adsorbate and solid. It is, therefore, an ideal system to observe the influence of adsorbate–adsorbate interactions on infrared absorption. In this work, we report polarized FTIR absorption spectra of CO/NaCl(100) as a function of coverage (0.02 ≤ θ ≤ 1 ML), where the coverage has been quantitatively determined by temperature-programmed desorption and molecular beam dosing. We extend a previous semi-empirical model designed to describe the screening of the local electric field due to dipole–dipole interactions in a CO monolayer. The extended model applies to sub-monolayer coverages and describes properly the electric field of the absorbed radiation at the vacuum–substrate interface. Fitting this model to coverage-dependent IR absorption data allows us to derive the vibrational and electronic polarizabilities [χv = 0.0435(14) Å3, χe = 3.30(36) Å3] and the integrated absorption cross section of 2.51(8) × 10−17 cm/molecule for an isolated CO molecule adsorbed at the NaCl (100) surface. The determined integrated absorption cross section is substantially smaller than that of gas phase CO.

1.
H. C.
Chang
,
C.
Noda
, and
G. E.
Ewing
,
J. Vac. Sci. Technol., A
8
,
2644
(
1990
).
2.
G. E.
Ewing
,
Int. Rev. Phys. Chem.
10
,
391
(
1991
).
3.
G. E.
Ewing
,
Acc. Chem. Res.
25
,
292
(
1992
).
4.
P. N. M.
Hoang
 et al,
J. Chem. Phys.
105
,
8453
(
1996
).
5.
A. W.
Meredith
and
A. J.
Stone
,
J. Chem. Phys.
104
,
3058
(
1996
).
6.
S.
Picaud
 et al,
Surf. Sci.
294
,
149
(
1993
).
7.
J. A.
Lau
 et al,
Science
367
,
175
(
2020
).
8.
J. E.
Gready
,
C. B.
Bacskay
, and
N. S.
Hush
,
Chem. Phys.
31
,
375
(
1978
).
9.
L.
Chen
 et al,
Science
363
,
158
(
2019
).
10.
S. A.
Corcelli
and
J. C.
Tully
,
J. Chem. Phys.
116
,
8079
(
2002
).
11.
H. H.
Richardson
and
G. E.
Ewing
,
J. Phys. Chem.
91
,
5833
(
1987
).
12.
H. H.
Richardson
 et al,
Surf. Sci.
216
,
93
(
1989
).
13.
J.
Heidberg
,
E.
Kampshoff
, and
M.
Suhren
,
J. Chem. Phys.
95
,
9408
(
1991
).
14.
J.
Heidberg
 et al,
Surf. Sci.
269-270
,
128
(
1992
).
15.
D.
Schmicker
 et al,
J. Chem. Phys.
95
,
9412
(
1991
).
16.
J.
Heidberg
 et al,
Ber. Bunsengesellschaft Phys. Chem.
94
,
112
(
1990
).
17.
J.
Heidberg
 et al,
Surf. Sci.
226
,
L43
(
1990
).
18.
D. J.
Dai
and
G. E.
Ewing
,
Surf. Sci.
312
,
239
(
1994
).
19.
R.
Disselkamp
,
H.-C.
Chang
, and
G. E.
Ewing
,
Surf. Sci.
240
,
193
(
1990
).
20.
D. K.
Lambert
,
G. P. M.
Poppe
, and
C. M. J.
Wijers
,
J. Chem. Phys.
103
,
6206
(
1995
).
21.
D. K.
Lambert
,
J. Chem. Phys.
94
,
6237
(
1991
).
22.
D. K.
Lambert
,
J. Chem. Phys.
89
,
3847
(
1988
).
23.
H.
Pfnür
 et al,
Surf. Sci.
93
,
431
(
1980
).
24.
R. M.
Hammaker
,
S. A.
Francis
, and
R. P.
Eischens
,
Spectrochim. Acta
21
,
1295
(
1965
).
25.
R.
Ryberg
,
Surf. Sci.
114
,
627
(
1982
).
26.
B. N. J.
Persson
and
R.
Ryberg
,
Solid State Commun.
36
,
613
(
1980
).
27.
A.
Crossley
and
D. A.
King
,
Surf. Sci.
68
,
528
(
1977
).
28.
C.
Noda
and
G. E.
Ewing
,
Surf. Sci.
240
,
181
(
1990
).
29.
M.
Thomas
, “
Untersuchungen von Monolagen und Submonolagen der Adsorbate CO-NaCl(001) und CO-KCl(001) in Transmissions- sowie ATR-Geometrie
,” Ph.D. thesis (
University of Hanover
,
2000
).
30.
A. V.
Snigur
and
V. M.
Rozenbaum
,
Opt. Spectrosc.
95
,
685
(
2003
).
31.
L.
Chen
 et al,
Acc. Chem. Res.
50
,
1400
(
2017
).
32.
B. N. J.
Persson
and
R.
Ryberg
,
Phys. Rev. B
24
,
6954
(
1981
).
33.
G. D.
Mahan
and
A. A.
Lucas
,
J. Chem. Phys.
68
,
1344
(
1978
).
34.
V. M.
Rozenbaum
,
Phys. Lett. A
176
,
249
(
1993
).
35.
V. M.
Rozenbaum
,
J. Exp. Theor. Phys.
80
,
289
(
1995
).
36.
B. N. J.
Persson
,
F. M.
Hoffmann
, and
R.
Ryberg
,
Phys. Rev. B
34
,
2266
(
1986
).
37.
Y. J.
Chabal
,
M. A.
Hines
, and
D.
Feijóo
,
J. Vac. Sci. Technol., A
13
,
1719
(
1995
).
38.
Y. J.
Chabal
,
Surf. Sci. Rep.
8
,
211
(
1988
).
39.
J. E.
Eldridge
and
E. D.
Palik
, in
Handbook of Optical Constants of Solids
, edited by
E. D.
Palik
(
Academic Press
,
Burlington
,
1997
), p.
775
.
40.
H. C.
Chang
,
H. H.
Richardson
, and
G. E.
Ewing
,
J. Chem. Phys.
89
,
7561
(
1988
).
41.
D. P.
Engelhart
 et al,
Surf. Sci.
650
,
11
(
2016
).
42.
J.
Chen
 et al,
J. Phys. Chem. C
124
,
19146
(
2020
).
43.
R. C.
Hilborn
,
Am. J. Phys.
50
,
982
(
1982
).
44.
J.
Vogt
and
B.
Vogt
,
J. Chem. Phys.
141
,
214708
(
2014
).
45.
P.
Varanasi
and
S.
Sarangi
,
J. Quant. Spectrosc. Radiat. Transfer
15
,
473
(
1975
).
46.
Y. N.
Kalugina
and
V. N.
Cherepanov
,
Atmos. Oceanic Opt.
28
,
406
(
2015
).
47.
W.
Chen
and
W. L.
Schaich
,
Surf. Sci.
218
,
580
(
1989
).
48.
G. P. M.
Poppe
,
C. M. J.
Wijers
, and
A.
van Silfhout
,
Surf. Sci.
251-252
,
321
(
1991
).
49.
G. P. M.
Poppe
,
C. M. J.
Wijers
, and
A.
van Silfhout
,
Phys. Rev. B
44
,
7917
(
1991
).
50.
M.
Born
and
E.
Wolf
,
Principles of Optics
, 7th ed. (
Cambridge University Press
,
Cambridge
,
1999
).
51.
J.
Heidberg
 et al,
Surf. Sci.
427-428
,
431
(
1999
).

Supplementary Material

You do not currently have access to this content.