Two-dimensional transition metal dichalcogenides (TMDs) are receiving significant attention due to their excellent electronic and optoelectronic properties. The material quality is greatly affected by defects that are inevitably generated during material synthesis. Focusing on chalcogenide vacancies, which constitute the most common defect, we use the state-of-the-art simulation methodology developed in our group to demonstrate that W doping of MoSe2 with Se vacancies reduces charge carrier losses by two mechanisms. First, W doping makes the formation of double Se vacancies unfavorable, while it is favorable in undoped MoSe2. Second, if a Se vacancy is present, the charge carrier lifetimes are extended in the W-doped MoSe2. Combining ab initio real-time time-dependent density functional theory with nonadiabatic molecular dynamics, the simulations show that the nonradiative carrier losses in the presence of Se vacancies proceed by sub-10 ps electron trapping and relaxation down the manifold of trap states, followed by a 100 ps recombination of trapped electrons with free holes. The electron–vibrational energy exchange is driven by both in-plane and out-of-plane vibrational motions of the MoSe2 layer. The atomistic studies advance our understanding of the influence of defects on charge carrier properties in TMDs and guide improvements of material quality and development of TMD applications.

1.
X.
Duan
,
C.
Wang
,
A.
Pan
,
R.
Yu
, and
X.
Duan
,
Chem. Soc. Rev.
44
,
8859
(
2015
).
2.
C.
Ruppert
,
O. B.
Aslan
, and
T. F.
Heinz
,
Nano Lett.
14
,
6231
(
2014
).
3.
H. R.
Gutiérrez
,
N.
Perea-López
,
A. L.
Elías
,
A.
Berkdemir
,
B.
Wang
,
R.
Lv
,
F.
López-Urías
,
V. H.
Crespi
,
H.
Terrones
, and
M.
Terrones
,
Nano Lett.
13
,
3447
(
2013
).
4.
D.
Xiao
,
G.-B.
Liu
,
W.
Feng
,
X.
Xu
, and
W.
Yao
,
Phys. Rev. Lett.
108
,
196802
(
2012
).
5.
T.
Hu
,
R.
Li
, and
J.
Dong
,
J. Chem. Phys.
139
,
174702
(
2013
).
6.
Z.
Wu
,
B.
Fang
,
A.
Bonakdarpour
,
A.
Sun
,
D. P.
Wilkinson
, and
D.
Wang
,
Appl. Catal., B
125
,
59
(
2012
).
7.
Y.
Li
,
K.
Zhang
,
F.
Wang
,
Y.
Feng
,
Y.
Li
,
Y.
Han
,
D.
Tang
, and
B.
Zhang
,
ACS Appl. Mater. Interfaces
9
,
36009
(
2017
).
8.
F.
Leroy
,
J. Chem. Phys.
145
,
164705
(
2016
).
9.
G.
Eda
and
S. A.
Maier
,
Acs Nano
7
,
5660
(
2013
).
10.
J.
Xia
,
X.
Huang
,
L.-Z.
Liu
,
M.
Wang
,
L.
Wang
,
B.
Huang
,
D.-D.
Zhu
,
J.-J.
Li
,
C.-Z.
Gu
, and
X.-M.
Meng
,
Nanoscale
6
,
8949
(
2014
).
11.
H. I.
Karunadasa
,
E.
Montalvo
,
Y.
Sun
,
M.
Majda
,
J. R.
Long
, and
C. J.
Chang
,
Science
335
,
698
(
2012
).
12.
A.
Halder
,
L. A.
Curtiss
,
A.
Fortunelli
, and
S.
Vajda
,
J. Chem. Phys.
148
,
110901
(
2018
).
13.
Y.
Shi
,
Y.
Wang
,
J. I.
Wong
,
A. Y. S.
Tan
,
C.-L.
Hsu
,
L.-J.
Li
,
Y.-C.
Lu
, and
H. Y.
Yang
,
Sci. Rep.
3
,
2169
(
2013
).
14.
H.
Zeng
,
J.
Dai
,
W.
Yao
,
D.
Xiao
, and
X.
Cui
,
Nat. Nanotechnol.
7
,
490
(
2012
).
15.
S.
Tongay
,
J.
Zhou
,
C.
Ataca
,
K.
Lo
,
T. S.
Matthews
,
J.
Li
,
J. C.
Grossman
, and
J.
Wu
,
Nano Lett.
12
,
5576
(
2012
).
16.
M.
Bernardi
,
M.
Palummo
, and
J. C.
Grossman
,
Nano Lett.
13
,
3664
(
2013
).
17.
S.-K.
Mo
,
C.
Hwang
,
Y.
Zhang
,
M.
Fanciulli
,
S.
Muff
,
J.
Hugo Dil
,
Z.-X.
Shen
, and
Z.
Hussain
,
J. Phys.: Condens. Matter
28
,
454001
(
2016
).
18.
Q.
Zhang
,
Y.
Chen
,
C.
Zhang
,
C.-R.
Pan
,
M.-Y.
Chou
,
C.
Zeng
, and
C.-K.
Shih
,
Nat. Commun.
7
,
13843
(
2016
).
19.
X.-X.
Xue
,
Y.
Feng
,
K.
Chen
, and
L.
Zhang
,
J. Chem. Phys.
148
,
134704
(
2018
).
20.
J. N.
Coleman
,
M.
Lotya
,
A.
O’Neill
,
S. D.
Bergin
,
P. J.
King
,
U.
Khan
,
K.
Young
,
A.
Gaucher
,
S.
De
,
R. J.
Smith
,
I. V.
Shvets
,
S. K.
Arora
,
G.
Stanton
,
H.-Y.
Kim
,
K.
Lee
,
G. T.
Kim
,
G. S.
Duesberg
,
T.
Hallam
,
J. J.
Boland
,
J. J.
Wang
,
J. F.
Donegan
,
J. C.
Grunlan
,
G.
Moriarty
,
A.
Shmeliov
,
R. J.
Nicholls
,
J. M.
Perkins
,
E. M.
Grieveson
,
K.
Theuwissen
,
D. W.
McComb
,
P. D.
Nellist
, and
V.
Nicolosi
,
Science
331
,
568
(
2011
).
21.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
10451
(
2005
).
22.
D.
Ma
,
Q.
Wang
,
T.
Li
,
C.
He
,
B.
Ma
,
Y.
Tang
,
Z.
Lu
, and
Z.
Yang
,
J. Mater. Chem. C
4
,
7093
(
2016
).
23.
L.
Li
,
R.
Long
,
T.
Bertolini
, and
O. V.
Prezhdo
,
Nano Lett.
17
,
7962
(
2017
).
24.
S.
Refaely-Abramson
,
D. Y.
Qiu
,
S. G.
Louie
, and
J. B.
Neaton
,
Phys. Rev. Lett.
121
,
167402
(
2018
).
25.
S.
Tongay
,
J.
Suh
,
C.
Ataca
,
W.
Fan
,
A.
Luce
,
J. S.
Kang
,
J.
Liu
,
C.
Ko
,
R.
Raghunathanan
,
J.
Zhou
,
F.
Ogletree
,
J.
Li
,
J. C.
Grossman
, and
J.
Wu
,
Sci. Rep.
3
,
2657
(
2013
).
26.
L.
Cai
,
J.
He
,
Q.
Liu
,
T.
Yao
,
L.
Chen
,
W.
Yan
,
F.
Hu
,
Y.
Jiang
,
Y.
Zhao
,
T.
Hu
,
Z.
Sun
, and
S.
Wei
,
J. Am. Chem. Soc.
137
,
2622
(
2015
).
27.
X.
Li
,
A. A.
Puretzky
,
X.
Sang
,
K. C.
Santosh
,
M.
Tian
,
F.
Ceballos
,
M.
Mahjouri-Samani
,
K.
Wang
,
R. R.
Unocic
,
H.
Zhao
,
G.
Duscher
,
V. R.
Cooper
,
C. M.
Rouleau
,
D. B.
Geohegan
, and
K.
Xiao
,
Adv. Funct. Mater.
27
,
1603850
(
2017
).
28.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
29.
W.
Stier
and
O. V.
Prezhdo
,
J. Phys. Chem. B
106
,
8047
(
2002
).
30.
H. M.
Jaeger
,
S.
Fischer
, and
O. V.
Prezhdo
,
J. Chem. Phys.
137
,
22A545
(
2012
).
31.
A. V.
Akimov
and
O. V.
Prezhdo
,
J. Chem. Theory Comput.
9
,
4959
(
2013
).
32.
A. V.
Akimov
and
O. V.
Prezhdo
,
J. Chem. Theory Comput.
10
,
789
(
2014
).
33.
L.
Zhang
,
A. S.
Vasenko
,
J.
Zhao
, and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
10
,
1083
1091
(
2019
).
34.
R.
Long
,
D.
Casanova
,
W.-H.
Fang
, and
O. V.
Prezhdo
,
J. Am. Chem. Soc.
139
,
2619
2629
(
2017
).
35.
W.
Li
,
A. S.
Vasenko
,
J.
Tang
, and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
10
,
6219
6226
(
2019
).
36.
R.
Long
and
O. V.
Prezhdo
,
Nano Lett.
16
,
1996
(
2016
).
37.
Y.
Yang
,
W.-H.
Fang
,
A.
Benderskii
,
R.
Long
, and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
10
,
7732
7739
(
2019
).
38.
Y.
Yang
,
W.-H.
Fang
, and
R.
Long
,
J. Phys. Chem. Lett.
8
,
5771
(
2017
).
39.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
41.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
42.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
43.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
8215
(
2003
).
44.
L.
Li
,
M.-F.
Lin
,
X.
Zhang
,
A.
Britz
,
A.
Krishnamoorthy
,
R.
Ma
,
R. K.
Kalia
,
A.
Nakano
,
P.
Vashishta
,
P.
Ajayan
,
M. C.
Hoffmann
,
D. M.
Fritz
,
U.
Bergmann
, and
O. V.
Prezhdo
,
Nano Lett.
19
,
6078
6086
(
2019
).
45.
O. V.
Prezhdo
and
P. J.
Rossky
,
Phys. Rev. Lett.
81
,
5294
5297
(
1998
).
46.
S.
Kilina
,
A.
Neukirch
,
B. F.
Habenicht
,
D. S.
Kilin
, and
O. V.
Prezhdo
,
Phys. Rev. Lett.
110
,
180404
(
2013
).
47.
H.
Terrones
,
E.
Del Corro
,
S.
Feng
,
J. M.
Poumirol
,
D.
Rhodes
,
D.
Smirnov
,
N. R.
Pradhan
,
Z.
Lin
,
M. A. T.
Nguyen
,
A. L.
Elias
,
T. E.
Mallouk
,
L.
Balicas
,
M. A.
Pimenta
, and
M.
Terrones
,
Sci. Rep.
4
,
4215
(
2014
).

Supplementary Material

You do not currently have access to this content.