Computational predictions of the high-pressure viscosity of hydrocarbon mixtures could help to accelerate the development of fuels and lubricants with improved performance. In this study, we use molecular dynamics simulations to study the viscosity and density of methylcyclohexane, 1-methylnaphthalene, and their binary mixtures at 323 K and pressures of up to 500 MPa. The simulation results are in excellent agreement with previous experiments available up to 100 MPa for both pure compounds (200 MPa for 1-methylnaphthalene) and the binary mixtures. For 1-methylnaphthalene, the viscosity initially increases slower-than-exponential with pressure before it reaches an inflection point and then increases faster-than-exponential. The inflection point (300 MPa) occurs at a pressure slightly below the one at which 1-methylnaphthalene is expected to enter the supercooled phase (400 MPa). For methylcyclohexane, the increase in viscosity with pressure is slower-than-exponential over the entire pressure range studied. The binary mixtures show intermediate pressure–viscosity responses between the two pure cases. The applicability of equations commonly used to describe the pressure dependence of viscosity, as well as the viscosity of binary mixtures, is evaluated against the computational predictions.

1.
E.
Hendriks
,
G. M.
Kontogeorgis
,
R.
Dohrn
,
J.-C.
De Hemptinne
,
I. G.
Economou
,
L. F.
Žilnik
, and
V.
Vesovic
, “
Industrial requirements for thermodynamics and transport properties
,”
Ind. Eng. Chem. Res.
49
,
11131
11141
(
2010
).
2.
A. J.
Rowane
,
V.
Mahesh Babu
,
H. B.
Rokni
,
J. D.
Moore
,
M.
Gavaises
,
M.
Wensing
,
A.
Gupta
, and
M. A.
McHugh
, “
Effect of composition, temperature, and pressure on the viscosities and densities of three diesel fuels
,”
J. Chem. Eng. Data
64
,
5529
5547
(
2019
).
3.
S.
Bair
and
F.
Qureshi
, “
Accurate measurements of pressure-viscosity behavior in lubricants
,”
Tribol. Trans.
45
,
390
396
(
2002
).
4.
J.
Zhang
and
H.
Spikes
, “
Measurement of EHD friction at very high contact pressures
,”
Tribol. Lett.
68
,
42
(
2020
).
5.
S.
Bair
,
L.
Martinie
, and
P.
Vergne
, “
Classical EHL versus quantitative EHL: A perspective part II—Super-Arrhenius piezoviscosity, an essential component of elastohydrodynamic friction missing from classical EHL
,”
Tribol. Lett.
63
,
37
(
2016
).
6.
R. B.
Dow
, “
The viscosity of mixtures of liquids at high pressures
,”
Physics
6
,
71
79
(
1935
).
7.
S.
Arrhenius
, “
Über die dissociation der in wasser gelösten stoffe
,”
Z. Phys. Chem.
1
,
285
(
1887
).
8.
J.
Kendall
and
K. P.
Monroe
, “
The viscosity of liquids. II. The viscosity-composition curve for ideal liquid mixtures
,”
J. Am. Chem. Soc.
39
,
1787
1802
(
1917
).
9.
J. H.
Dymond
,
K. J.
Young
, and
J. D.
Isdale
, “
Transport properties of nonelectrolyte liquid mixtures—II. Viscosity coefficients for the n-hexane + n-hexadecane system at temperatures from 25 to 100 °C at pressures up to the freezing pressure or 500 MPa
,”
Int. J. Thermophys.
1
,
345
373
(
1980
).
10.
J. H.
Dymond
,
J.
Robertson
, and
J. D.
Isdale
, “
Transport properties of nonelectrolyte liquid mixtures—III. Viscosity coefficients for the n-octane, n-dodecane, and equimolar mixtures of n-octane + n-dodecane and n-hexane + n-dodecane from 25 to 100 °C at pressures up to the freezing pressure or 500 MPa
,”
Int. J. Thermophys.
2
,
133
154
(
1981
).
11.
L.
Grunberg
and
A. H.
Nissan
, “
Mixture law for viscosity
,”
Nature
164
,
799
800
(
1949
).
12.
J.
Manheim
,
K.
Wehde
,
W. T. J.
Zhang
,
P.
Vozka
,
M.
Romanczyk
,
G.
Kilaz
, and
H. I.
Kenttämaa
, “
Identification and quantitation of linear alkanes in lubricant base oils by using GC×GC/EI TOF mass spectrometry
,”
J. Am. Soc. Mass Spectrom.
30
,
2670
2677
(
2019
).
13.
L. A.
Mikeska
, “
Chemical structure of lubricating oils
,”
Ind. Eng. Chem.
28
,
970
984
(
1936
).
14.
E. M.
Griest
,
W.
Webb
, and
R. W.
Schiessler
, “
Effect of pressure on viscosity of higher hydrocarbons and their mixtures
,”
J. Chem. Phys.
29
,
711
720
(
1958
).
15.
J. H.
Dymond
,
N. F.
Glen
, and
J. D.
Isdale
, “
Transport properties of nonelectrolyte liquid mixtures—VII. Viscosity coefficients for isooctane and for equimolar mixtures of isooctane + n-octane and isooctane + n-dodecane from 25 to 100 °C at pressures up to 500 MPa or to the freezing pressure
,”
Int. J. Thermophys.
6
,
233
250
(
1985
).
16.
J. H.
Dymond
,
M. A.
Awan
,
N. F.
Glen
, and
J. D.
Isdale
, “
Transport properties of nonelectrolyte liquid mixtures. VIII. Viscosity coefficients for toluene and for three mixtures of toluene + hexane from 25 to 100 °C at pressures up to 500 MPa
,”
Int. J. Thermophys.
12
,
275
287
(
1991
).
17.
Y.
Tanaka
,
H.
Hosokawa
,
H.
Kubota
, and
T.
Makita
, “
Viscosity and density of binary mixtures of cyclohexane with n-octane, n-dodecane, and n-hexadecane under high pressures
,”
Int. J. Thermophys.
12
,
245
264
(
1991
).
18.
M.
Kanti
,
B.
Lagourette
,
J.
Alliez
, and
C.
Boned
, “
Viscosity of binary heptane—nonylbenzene as a function of pressure and temperature: Application of Flory’s theory
,”
Fluid Phase Equilib.
65
,
291
304
(
1991
).
19.
A.
Et-Tahir
,
C.
Boned
,
B.
Lagourette
, and
P.
Xans
, “
Determination of the viscosity of various hydrocarbons and mixtures of hydrocarbons versus temperature and pressure
,”
Int. J. Thermophys.
16
,
1309
1334
(
1995
).
20.
A.
Baylaucq
,
C.
Boned
,
P.
Dauge
, and
B.
Lagourette
, “
Measurements of the viscosity and density of three hydrocarbons and the three associated binary mixtures versus pressure and temperature
,”
Int. J. Thermophys.
18
,
3
23
(
1997
).
21.
P.
Daugé
,
A.
Baylaucq
,
X.
Canet
, and
C.
Boned
, “
High pressure viscosity and density measurements of the binary mixture tridecane + 2,2,4,4,6,8,8-heptamethylnonane
,”
High Pressure Res.
18
,
291
296
(
2000
).
22.
X.
Canet
,
P.
Daugé
,
A.
Baylaucq
,
C.
Boned
,
C. K.
Zéberg-Mikkelsen
,
S. E.
Quiñones-Cisneros
, and
E. H.
Stenby
, “
Density and viscosity of the 1-methylnaphthalene + 2,2,4,4,6,8,8-heptamethylnonane system from 293.15 to 353.15 K at pressures up to 100 MPa
,”
Int. J. Thermophys.
22
,
1669
1689
(
2001
).
23.
C.
Zéberg-Mikkelsen
,
M.
Barrouhou
,
A.
Baylaucq
, and
C.
Boned
, “
Measurements of the viscosity and density versus temperature and pressure for the binary system methylcyclohexane + 2,2,4,4,6,8,8-heptamethylnonane
,”
High Temp. - High Pressure
34
,
591
601
(
2002
).
24.
M.
Barrouhou
,
C. K.
Zebérg-Mikkelsen
,
A.
Baylaucq
, and
C.
Boned
, “
High-pressure viscosity and density measurements for the asymmetric binary system cis-decalin +2,2,4,4,6,8,8-heptamethylnonane
,”
Int. J. Thermophys.
24
,
937
952
(
2003
).
25.
C. K.
Zéberg-Mikkelsen
,
M.
Barrouhou
,
A.
Baylaucq
, and
C.
Boned
, “
Viscosity and density measurements of binary mixtures composed of methylcyclohexane + cis-decalin versus temperature and pressure
,”
Int. J. Thermophys.
24
,
361
374
(
2003
).
26.
S.
Bair
and
S.
Flores-Torres
, “
The viscosity of polyalphaolefins mixtures at high pressure and stress
,”
J. Tribol.
141
,
021802
(
2019
).
27.
J. P.
Ewen
,
D. M.
Heyes
, and
D.
Dini
, “
Advances in nonequilibrium molecular dynamics simulations of lubricants and additives
,”
Friction
6
,
349
386
(
2018
).
28.
J.
Ewen
,
C.
Gattinoni
,
F.
Thakkar
,
N.
Morgan
,
H.
Spikes
, and
D.
Dini
, “
A comparison of classical force-fields for molecular dynamics simulations of lubricants
,”
Materials
9
,
651
(
2016
).
29.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular-dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
30.
W. M.
Brown
,
P.
Wang
,
S. J.
Plimpton
, and
A. N.
Tharrington
, “
Implementing molecular dynamics on hybrid high performance computers–short range forces
,”
Comput. Phys. Commun.
182
,
898
911
(
2011
).
31.
W. M.
Brown
,
A.
Kohlmeyer
,
S. J.
Plimpton
, and
A. N.
Tharrington
, “
Implementing molecular dynamics on hybrid high performance computers—Particle-particle particle-mesh
,”
Comput. Phys. Commun.
183
,
449
459
(
2012
).
32.
V.
Stegailov
,
E.
Dlinnova
,
T.
Ismagilov
,
M.
Khalilov
,
N.
Kondratyuk
,
D.
Makagon
,
A.
Semenov
,
A.
Simonov
,
G.
Smirnov
, and
A.
Timofeev
, “
Angara interconnect makes GPU-based Desmos supercomputer an efficient tool for molecular dynamics calculations
,”
Int. J. High Perform. Comput. Appl.
33
,
507
521
(
2019
).
33.
S.
Bair
, “
The pressure dependence of viscosity for 2,2,4 trimethylhexane to 1 GPa along the 20 °C isotherm
,”
Fluid Phase Equilib.
488
,
9
12
(
2019
).
34.
M. A.
Galvani Cunha
and
M. O.
Robbins
, “
Determination of pressure-viscosity relation of 2,2,4-trimethylhexane by all-atom molecular dynamics simulation
,”
Fluid Phase Equilib.
495
,
28
32
(
2019
).
35.
N. D.
Kondratyuk
and
V. V.
Pisarev
, “
Calculation of viscosities of branched alkanes from 0.1 to 1000 MPa by molecular dynamics methods using COMPASS force field
,”
Fluid Phase Equilib.
498
,
151
159
(
2019
).
36.
Z.
Gong
and
H.
Sun
, “
Pressure-viscosity relation of 2,2,4-trimethylhexane predicted using all-atom TEAM force field
,”
Fluid Phase Equilib.
497
,
64
70
(
2019
).
37.
L. I.
Kioupis
and
E. J.
Maginn
, “
Rheology, dynamics, and structure of hydrocarbon blends: A molecular dynamics study of n-hexane/n-hexadecane mixtures
,”
Chem. Eng. J.
74
,
129
146
(
1999
).
38.
M.
Aquing
,
F.
Ciotta
,
B.
Creton
,
C.
Féjean
,
A.
Pina
,
C.
Dartiguelongue
,
J. P. M.
Trusler
,
R.
Vignais
,
R.
Lugo
,
P.
Ungerer
, and
C.
Nieto-Draghi
, “
Composition analysis and viscosity prediction of complex fuel mixtures using a molecular-based approach
,”
Energy Fuels
26
,
2220
2230
(
2012
).
39.
Z. A.
Makrodimitri
,
A.
Heller
,
T. M.
Koller
,
M. H.
Rausch
,
M. S. H.
Fleys
,
A. N. R.
Bos
,
G. P.
Van Der Laan
,
A. P.
Fröba
, and
I. G.
Economou
, “
Viscosity of heavy n-alkanes and diffusion of gases therein based on molecular dynamics simulations and empirical correlations
,”
J. Chem. Thermodyn.
91
,
101
107
(
2015
).
40.
G.
Guevara-Carrion
,
T.
Janzen
,
Y. M.
Muñoz-Muñoz
, and
J.
Vrabec
, “
Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride
,”
J. Chem. Phys.
144
,
124501
(
2016
).
41.
B. L.
Mooney
,
B. H.
Morrow
,
K.
Van Nostrand
,
D.
Luning Prak
,
P. C.
Trulove
,
R. E.
Morris
,
J. D.
Schall
,
J. A.
Harrison
, and
M. T.
Knippenberg
, “
Elucidating the properties of surrogate fuel mixtures using molecular dynamics
,”
Energy Fuels
30
,
784
795
(
2016
).
42.
A.
Verma
,
R.
Cracknell
,
D.
Doyle
, and
I.
Rudra
, “
Determination of diesel physical properties at injection pressures and temperatures via all-atom molecular simulations
,”
SAE Int. J. Fuels Lubr.
9
,
567
(
2016
).
43.
B. H.
Morrow
,
S.
Maskey
,
M. Z.
Gustafson
,
D. J.
Luning Prak
, and
J. A.
Harrison
, “
Impact of molecular structure on properties of n-hexadecane and alkylbenzene binary mixtures
,”
J. Phys. Chem. B
122
,
6595
6603
(
2018
).
44.
V.
Pisarev
and
N.
Kondratyuk
, “
Prediction of viscosity-density dependence of liquid methane + n-butane + n-pentane mixtures using the molecular dynamics method and empirical correlations
,”
Fluid Phase Equilib.
501
,
112273
(
2019
).
45.
D. L.
Prak
,
B. H.
Morrow
,
J. S.
Cowart
, and
J. A.
Harrison
, “
Binary mixtures of aromatic compounds (n-propylbenzene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene) with 2,2,4,6,6-pentamethylheptane: Densities, viscosities, speeds of sound, bulk moduli, surface tensions, and flash points at 0.1 MPa
,”
J. Chem. Eng. Data
65
,
2625
2641
(
2020
).
46.
I. J.
Prentice
,
X.
Liu
,
O. A.
Nerushev
,
S.
Balakrishnan
,
C. R.
Pulham
, and
P. J.
Camp
, “
Experimental and simulation study of the high-pressure behavior of squalane and poly-α-olefins
,”
J. Chem. Phys.
152
,
074504
(
2020
).
47.
M. S.
Green
, “
Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids
,”
J. Chem. Phys.
22
,
398
413
(
1954
).
48.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
570
586
(
1957
).
49.
F.
Müller-Plathe
, “
Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids
,”
Phys. Rev. E
59
,
4894
4898
(
1999
).
50.
D. J.
Evans
and
G. P.
Morriss
, “
Nonlinear-response theory for steady planar Couette flow
,”
Phys. Rev. A
30
,
1528
1530
(
1984
).
51.
C. J.
Mueller
,
W. J.
Cannella
,
T. J.
Bruno
,
B.
Bunting
,
H. D.
Dettman
,
J. A.
Franz
,
M. L.
Huber
,
M.
Natarajan
,
W. J.
Pitz
,
M. A.
Ratcliff
, and
K.
Wright
, “
Methodology for formulating diesel surrogate fuels with accurate compositional, ignition-quality, and volatility characteristics
,”
Energy Fuels
26
,
3284
3303
(
2012
).
52.
D. R.
Caudwell
,
J. P. M.
Trusler
,
V.
Vesovic
, and
W. A.
Wakeham
, “
Viscosity and density of five hydrocarbon liquids at pressures up to 200 MPa and temperatures up to 473 K
,”
J. Chem. Eng. Data
54
,
359
366
(
2009
).
53.
P. W.
Bridgman
, “
The effect of pressure on the viscosity of forty-three pure liquids
,”
Proc. Am. Acad. Arts Sci.
61
,
57
99
(
1926
).
54.
J.
Jonas
,
D.
Hasha
, and
S. G.
Huang
, “
Self-diffusion and viscosity of methylcyclohexane in the dense liquid region
,”
J. Chem. Phys.
71
,
3996
4000
(
1979
).
55.
L. I.
Kioupis
and
E. J.
Maginn
, “
Impact of molecular architecture on the high-pressure rheology of hydrocarbon fluids
,”
J. Phys. Chem. B
104
,
7774
7783
(
2000
).
56.
Y.
Zhang
,
A.
Otani
, and
E. J.
Maginn
, “
Reliable viscosity calculation from equilibrium molecular dynamics simulations: A time decomposition method
,”
J. Chem. Theory Comput.
11
,
3537
3546
(
2015
).
57.
E. J.
Maginn
,
R. A.
Messerly
,
D. J.
Carlson
,
D. R.
Roe
, and
R.
Elliott
, “
Best practices for computing transport properties 1. Self-diffusivity and viscosity from equilibrium molecular dynamics
,”
Living J. Comput. Mol. Sci.
1
,
6324
(
2018
).
58.
V.
Jadhao
and
M. O.
Robbins
, “
Probing large viscosities in glass-formers with nonequilibrium simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
7952
7957
(
2017
).
59.
R.
Rahmani
,
H.
Rahnejat
,
B.
Fitzsimons
, and
D.
Dowson
, “
The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction
,”
Appl. Energy
191
,
568
581
(
2017
).
60.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
61.
H.
Sun
, “
COMPASS: An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds
,”
J. Phys. Chem. B
102
,
7338
7364
(
1998
).
62.
T. C.
O’Connor
,
J.
Andzelm
, and
M. O.
Robbins
, “
AIREBO-M: A reactive model for hydrocarbons at extreme pressures
,”
J. Chem. Phys.
142
,
024903
(
2015
).
63.
N.
Kondratyuk
,
D.
Lenev
, and
V.
Pisarev
, “
Transport coefficients of model lubricants up to 400 MPa from molecular dynamics
,”
J. Chem. Phys.
152
,
191104
(
2020
).
64.
P.
Santak
and
G.
Conduit
, “
Enhancing NEMD with automatic shear rate sampling to model viscosity and correction of systematic errors in modeling density: Application to linear and light branched alkanes
,”
J. Chem. Phys.
153
,
014102
(
2020
).
65.
S.
Kajita
,
T.
Kinjo
, and
T.
Nishi
, “
Autonomous molecular design by Monte-Carlo tree search and rapid evaluations using molecular dynamics simulations
,”
Commun. Phys.
3
,
77
(
2020
).
66.
B. A.
Luty
,
M. E.
Davis
,
I. G.
Tironi
, and
W. F.
van Gunsteren
, “
A comparison of particle–particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular-systems
,”
Mol. Simul.
14
,
11
20
(
1994
).
67.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
, “
Reversible multiple time scale molecular dynamics
,”
J. Chem. Phys.
97
,
1990
2001
(
1992
).
68.
K.-S.
Kim
,
M. H.
Han
,
C.
Kim
,
Z.
Li
,
G. E.
Karniadakis
, and
E. K.
Lee
, “
Nature of intrinsic uncertainties in equilibrium molecular dynamics estimation of shear viscosity for simple and complex fluids
,”
J. Chem. Phys.
149
,
044510
(
2018
).
69.
S.
Nosé
, “
A molecular-dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
70.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
71.
S. E.
Babb
, “
Parameters in the Simon equation relating pressure and melting temperature
,”
Rev. Mod. Phys.
35
,
400
413
(
1963
).
72.
C.
Yokoyama
,
T.
Ebina
, and
S.
Takahashi
, “
High pressure solid-liquid equilibria and PVTx relationships for the 1-methylnaphthalene-indole system
,”
Fluid Phase Equilib.
104
,
391
402
(
1995
).
73.
P. G.
Debenedetti
and
F. H.
Stillinger
, “
Supercooled liquids and the glass transition
,”
Nature
410
,
259
267
(
2001
).
74.
C. A.
Angell
,
J. M.
Sare
, and
E. J.
Sare
, “
Glass transition temperatures for simple molecular liquids and their binary solutions
,”
J. Phys. Chem.
82
,
2622
2629
(
1978
).
75.
J. H.
Dymond
and
R.
Malhotra
, “
The Tait equation: 100 years on
,”
Int. J. Thermophys.
9
,
941
951
(
1988
).
76.
D. L.
Severance
and
W. L.
Jorgensen
, “
Aromatic-aromatic interactions: Free energy profiles for the benzene dimer in water, chloroform, and liquid benzene
,”
J. Am. Chem. Soc.
112
,
4768
4774
(
1990
).
77.
W. R.
Jones
,
R. L.
Johnson
,
W. O.
Winer
, and
D. M.
Sanborn
, “
Pressure-viscosity measurements for several lubricants to 5.5 × 108 newtons per square meter 8 × 104 PSI) and 149 °C (300 F)
,”
ASLE Trans.
18
,
249
262
(
1975
).
78.
B. K.
Sharma
and
A. J.
Stipanovic
, “
Pressure viscosity coefficient of lubricant base oils as estimated by nuclear magnetic resonance spectroscopy
,”
Ind. Eng. Chem. Res.
41
,
4889
4898
(
2002
).
79.
S.
Bair
, “
Pressure–viscosity response in the inlet zone for quantitative elastohydrodynamics
,”
Tribol. Int.
97
,
272
277
(
2016
).
80.
C. J. A.
Roelands
,
J. C.
Vlugter
, and
H. I.
Waterman
, “
The viscosity-temperature-pressure relationship of lubricating oils and its correlation with chemical constitution
,”
J. Basic Eng.
85
,
601
(
1963
).
81.
E.
McEwen
, “
The effect of variation of viscosity with pressure on the load-carrying capacity of the oil film between gear-teeth
,”
J. Inst. Pet.
38
,
646
672
(
1952
).
82.
M.
Paluch
,
Z.
Dendzik
, and
S. J.
Rzoska
, “
Scaling of high-pressure viscosity data in low-molecular-weight glass-forming liquids
,”
Phys. Rev. B
60
,
2979
2982
(
1999
).
83.
P. W.
Bridgman
, “
The viscosity of liquids under pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
11
,
603
606
(
1925
).
84.
S. S.
Bair
,
O.
Andersson
,
F. S.
Qureshi
, and
M. M.
Schirru
, “
New EHL modeling data for the reference liquids squalane and squalane plus polyisoprene
,”
Tribol. Trans.
61
,
247
255
(
2017
).
85.
S.
Bair
, “
Choosing pressure-viscosity relations
,”
High Temp. - High Pressure
44
,
415
428
(
2015
).
You do not currently have access to this content.